\(A=x^2+y^2\) Biết x; y €R thoả mãn \(X^2+y^2-x...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

+ \(x^2+y^2-xy=4\) \(\Rightarrow2x^2+2y^2-2xy=8\)

\(\Rightarrow x^2+y^2+\left(x-y\right)^2=8\)

\(\Rightarrow x^2+y^2\le8\) ( do \(\left(x-y\right)^2\ge0\forall x,y\) )

Max \(x^2+y^2=8\Leftrightarrow\left\{{}\begin{matrix}x=y\\x^2+y^2-xy=4\end{matrix}\right.\Leftrightarrow x=y=2\)

19 tháng 8 2019

Max của bạn giống mk r mỗi tội cách la f khác thôi nhưng mà min đâu bạn??? Mk k làm ra min😭😭😭

2 tháng 12 2016

Mình gợi ý để bạn được người khác giúp nhé. Khi đăng bài bạn nên đăng từng câu. Đừng đăng nhiều câu cùng lúc vì nhìn vô không ai muốn giải hết. Giờ bạn tách ra từng câu đăng lại đi. Sẽ có người giúp đấy

1 tháng 12 2016

Các bạn ơi giúp mình với ạ, cảm ơn nhiều!

tích mình với

ai tích mình

mình tích lại

thanks

14 tháng 2 2019

Tích mình đi mình tích lại

21 tháng 4 2020

\(\hept{\begin{cases}x+y\le2\\x^2+y^2+xy=3\end{cases}\Leftrightarrow\hept{\begin{cases}x+y=2-a\\x^2+y^2+xy=3\end{cases}\left(a\ge0\right)}}\)

Do đó: \(\hept{\begin{cases}x+y=2-a\\xy=\left(2-a\right)^2-3\end{cases}}\)

Điều kiện có nghiệm là: \(\Delta=S^2-4P\ge0\)và a>=0 nên 0 =<a =< 4

Ta có: \(T=x^2+y^2+xy-2xy=9-2\left(2-a\right)^2\)

=> \(Min_T=1\)khi x=1 và y=1 hoặc x=-1; y=-1

\(Max_T=9\)khi \(x=\sqrt{3};y=-\sqrt{3}\)hoặc \(x=-\sqrt{3};y=\sqrt{3}\)

21 tháng 10 2020

Tìm Min nhầm :((

21 tháng 10 2020

À Tìm Max đúng r :))