K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 1 2018

Bài 1:

Để hpt đã cho vô nghiệm thì m = 1 (lật sách trang 25 là hiểu)

Bài 2 :

Để hpt đã cho có vô số nghiệm thì m = 1

NV
27 tháng 4 2020

Câu 3:

\(\left\{{}\begin{matrix}mx+4y=9\\mx+m^2y=8m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=9\\\left(m^2-4\right)y=8m-9\end{matrix}\right.\)

Để hpt đã cho có nghiệm \(\Leftrightarrow m\ne\pm2\)

Khi đó ta có: \(\left\{{}\begin{matrix}y=\frac{8m-9}{m^2-4}\\x=8-my=8-\frac{8m^2-9m}{m^2-4}=\frac{9m-32}{m^2-4}\end{matrix}\right.\)

\(2x+y+\frac{38}{m^2-4}=3\)

\(\Leftrightarrow\frac{18m-64}{m^2-4}+\frac{8m-9}{m^2-4}+\frac{38}{m^2-4}=3\)

\(\Leftrightarrow26m-35=3m^2-12\)

\(\Leftrightarrow3m^2-26m+23=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\frac{23}{3}\end{matrix}\right.\)

Câu 4:

\(\left\{{}\begin{matrix}m^2x-my=2m^2\\4x-my=m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=2m^2-m-6\\4x-my=m+6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)x=\left(m-2\right)\left(2m+3\right)\\4x-my=m+6\end{matrix}\right.\)

- Với \(m=-2\) hệ vô nghiệm

- Với \(m=2\) hệ có vô số nghiệm thỏa mãn \(2x-y=4\)

- Với \(m\ne\pm2\) hệ có nghiệm duy nhất:

\(\left\{{}\begin{matrix}x=\frac{2m+3}{m+2}\\y=mx-2m=\frac{2m^2+3m-2m^2-4m}{m+2}=\frac{-m}{m+2}\end{matrix}\right.\)

NV
27 tháng 4 2020

Câu 1: ĐKXĐ \(\left\{{}\begin{matrix}x\ne1\\y\ne-1\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=u\\\frac{1}{y+1}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u+v=7\\5u-2v=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4u+2v=14\\5u-2v=4\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}u=2\\v=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=2\\\frac{1}{y+1}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=\frac{1}{2}\\y+1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=-\frac{2}{3}\end{matrix}\right.\)

Câu 2:

Để hệ có nghiệm (x;y)=\(\left(2;-1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}2m.2-\left(m+1\right).\left(-1\right)=m-n\\\left(m+2\right).2+3n\left(-1\right)=2m-3\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m+n=-1\\3n=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=\frac{7}{3}\\m=\frac{5}{6}\end{matrix}\right.\)

27 tháng 4 2018

a/thay m= 1 ta có hpt:

\(\left\{{}\begin{matrix}x+y=3\\4x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)

b/ \(\left\{{}\begin{matrix}mx+y=3\\4x+my=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2x-4x=3m-6\\4x+my=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(m^2-4\right)=3\left(m-2\right)\\4x+my=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(m+2\right)=3\\4x+my=6\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{m+2}\\y=\dfrac{\left(6-4\cdot\dfrac{3}{m+2}\right)}{m}\end{matrix}\right.\)

x, y nguyên dương => \(\left\{{}\begin{matrix}\dfrac{3}{m+2}>0\Leftrightarrow m>-2\\\dfrac{\left(6-\dfrac{12}{m+2}\right)}{m}>0\Leftrightarrow-2< m< 0\cup m>0\end{matrix}\right.\)

\(\Leftrightarrow m>-2;m#0\)

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số) 1, Giair hpt với a = 1 2, Gỉai hpt với a = \(\sqrt{3}\) 3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0 Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số) 1, Giair và biện luận hpt 2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định Bài 5: Cho hpt...
Đọc tiếp

Bài 3: Cho hệ phương trình \(\left\{{}\begin{matrix}ax-y=2\\x+ay=3\end{matrix}\right.\) (a là tham số)
1, Giair hpt với a = 1
2, Gỉai hpt với a = \(\sqrt{3}\)
3, Tìm a để hpt có nghiệm (x;y) thỏa mãn x + y < 0
Bài 4: Cho hpt \(\left\{{}\begin{matrix}mx+4y=10-m\\x+my=4\end{matrix}\right.\) (m là tham số)
1, Giair và biện luận hpt
2, CMR: Khi hpt có nghiệm (x;y) duy nhất thì M(x;y) luôn thuộc một đường thẳng cố định
Bài 5: Cho hpt \(\left\{{}\begin{matrix}mx-ny=5\\2x+y=n\end{matrix}\right.\) (m,n là các tham số)
2, Tìm m và n để hệ đã cho có nghiệm x = \(-\sqrt{3}\), y = \(\sqrt{4+2\sqrt{3}}\)
Bài 6: Cho hpt \(\left\{{}\begin{matrix}x+y=3m-2\\2x-y=5\end{matrix}\right.\) (m là tham số)
Tìm m để hpt có nghiệm (x;y) sao cho \(\dfrac{x^2-y-5}{y+1}=4\)
Bài 7: Cho hpt \(\left\{{}\begin{matrix}2x+3y=m+1\\x+2y=2m-8\end{matrix}\right.\) (m là tham số)
2, Tìm m để hệ có nghiệm (x;y) thỏa mãn x=3y
3, Tìm các giá trị của m để hệ có nghiệm (x;y) thỏa mãn x.y>0
Bài 9: Cho hpt \(\left\{{}\begin{matrix}2y-x=m+1\\2x-y=m-2\end{matrix}\right.\) (I) (m là tham số)
2, Tính giá trị của m để hpt (I) có nghiệm (x;y) sao cho biểu thức P = \(x^2+y^2\) đạt GTNN
Bài 10: Cho hpt \(\left\{{}\begin{matrix}\left(a+1\right)x-ay=5\\x+ay=a^2+4a\end{matrix}\right.\)
Tìm a nguyên để hệ có nghiệm duy nhất (x;y) với x,y nguyên

1
29 tháng 1 2018

Câu nào biết thì mink làm, thông cảm !

Bài 1:

1) Cho \(a=1\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)

2) Cho \(a=\sqrt{3}\) ta được:

\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)

Bữa sau làm tiếp


28 tháng 2 2020

\(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2m+1\right)x=m+3\\mx+y=m\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m+3}{2m+1}\\\frac{m\left(m+3\right)}{2m+1}+y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m+3}{2m+1}\\y=\frac{m^2-2m}{2m+1}\end{matrix}\right.\)

a) Thay \(m=\sqrt{2}\) ta có :

\(\left\{{}\begin{matrix}x=\frac{\sqrt{2}+3}{2\sqrt{2}+1}\\y=\frac{2-2\sqrt{2}}{2\sqrt{2}+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1+5\sqrt{2}}{7}\\y=\frac{6\sqrt{2}-10}{7}\end{matrix}\right.\)

b) Để x + y > 0 thì :

\(\frac{m+3}{2m+1}+\frac{m^2-2m}{2m+1}>0\Leftrightarrow\frac{m^2-m+3}{2m+1}>0\)

Lại có :

\(m^2-m+3=m^2-m+\frac{1}{4}+\frac{11}{4}=\left(m-\frac{1}{2}\right)^2+\frac{11}{4}>0\)

\(\Rightarrow2m+1>0\Leftrightarrow m>-\frac{1}{2}\)

Thay x = y = a vào hệ , ta có :

\(a=\frac{m+3}{2m+1}=\frac{m^2-2m}{2m+1}\Rightarrow m+3=m^2-2m\)

\(\Leftrightarrow m^2-3m-3=0\left(1\right)\)

Δ = 9 + 4.3.1 = 21 > 0

Vậy pt có 2 nghiệm phân biệt :

\(m_1=\frac{3+\sqrt{21}}{2}\left(tm\right);m_2=\frac{3-\sqrt{21}}{2}\left(tm\right)\)

Để hệ có nghiệm duy nhất thỏa mãn x + y > 0 thì m = ...

14 tháng 1 2020

a, Để hpt có nghiệm\(\left(x,y\right)=\left(-2;3\right)\) thì:

\(\left\{{}\begin{matrix}-2+3m=4\\-2n+4=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n=3\\m=2\end{matrix}\right.\)

b,Để hệ phương trình vô nghiệm thì:

\(\frac{1}{n}=m=\frac{4}{-3}\)

\(\Rightarrow m=\frac{4}{-3};n=-\frac{3}{4}\)

Vậy \(m=\frac{4}{-3};n=-\frac{3}{4}\) thì hệ phương trình có vô số nghiệm

3 tháng 6 2018

Ý a thì thay x=2 vào pt rồi tìm m xong rồi tìm nghiệm còn lại

Ý b tính denta hoặc denta' nếu lớn hoặc bằng k thì có nghiệm