Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Để hpt đã cho vô nghiệm thì m = 1 (lật sách trang 25 là hiểu)
Bài 2 :
Để hpt đã cho có vô số nghiệm thì m = 1
Câu 3:
\(\left\{{}\begin{matrix}mx+4y=9\\mx+m^2y=8m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=9\\\left(m^2-4\right)y=8m-9\end{matrix}\right.\)
Để hpt đã cho có nghiệm \(\Leftrightarrow m\ne\pm2\)
Khi đó ta có: \(\left\{{}\begin{matrix}y=\frac{8m-9}{m^2-4}\\x=8-my=8-\frac{8m^2-9m}{m^2-4}=\frac{9m-32}{m^2-4}\end{matrix}\right.\)
\(2x+y+\frac{38}{m^2-4}=3\)
\(\Leftrightarrow\frac{18m-64}{m^2-4}+\frac{8m-9}{m^2-4}+\frac{38}{m^2-4}=3\)
\(\Leftrightarrow26m-35=3m^2-12\)
\(\Leftrightarrow3m^2-26m+23=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\frac{23}{3}\end{matrix}\right.\)
Câu 4:
\(\left\{{}\begin{matrix}m^2x-my=2m^2\\4x-my=m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=2m^2-m-6\\4x-my=m+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)x=\left(m-2\right)\left(2m+3\right)\\4x-my=m+6\end{matrix}\right.\)
- Với \(m=-2\) hệ vô nghiệm
- Với \(m=2\) hệ có vô số nghiệm thỏa mãn \(2x-y=4\)
- Với \(m\ne\pm2\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{2m+3}{m+2}\\y=mx-2m=\frac{2m^2+3m-2m^2-4m}{m+2}=\frac{-m}{m+2}\end{matrix}\right.\)
Câu 1: ĐKXĐ \(\left\{{}\begin{matrix}x\ne1\\y\ne-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=u\\\frac{1}{y+1}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u+v=7\\5u-2v=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4u+2v=14\\5u-2v=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u=2\\v=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=2\\\frac{1}{y+1}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=\frac{1}{2}\\y+1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=-\frac{2}{3}\end{matrix}\right.\)
Câu 2:
Để hệ có nghiệm (x;y)=\(\left(2;-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m.2-\left(m+1\right).\left(-1\right)=m-n\\\left(m+2\right).2+3n\left(-1\right)=2m-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m+n=-1\\3n=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=\frac{7}{3}\\m=\frac{5}{6}\end{matrix}\right.\)
a/thay m= 1 ta có hpt:
\(\left\{{}\begin{matrix}x+y=3\\4x+y=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
b/ \(\left\{{}\begin{matrix}mx+y=3\\4x+my=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2x-4x=3m-6\\4x+my=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x\left(m^2-4\right)=3\left(m-2\right)\\4x+my=6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x\left(m+2\right)=3\\4x+my=6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\dfrac{3}{m+2}\\y=\dfrac{\left(6-4\cdot\dfrac{3}{m+2}\right)}{m}\end{matrix}\right.\)
x, y nguyên dương => \(\left\{{}\begin{matrix}\dfrac{3}{m+2}>0\Leftrightarrow m>-2\\\dfrac{\left(6-\dfrac{12}{m+2}\right)}{m}>0\Leftrightarrow-2< m< 0\cup m>0\end{matrix}\right.\)
\(\Leftrightarrow m>-2;m#0\)
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
\(\left\{{}\begin{matrix}\left(m+1\right)x-y=3\\mx+y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left(2m+1\right)x=m+3\\mx+y=m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m+3}{2m+1}\\\frac{m\left(m+3\right)}{2m+1}+y=m\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{m+3}{2m+1}\\y=\frac{m^2-2m}{2m+1}\end{matrix}\right.\)
a) Thay \(m=\sqrt{2}\) ta có :
\(\left\{{}\begin{matrix}x=\frac{\sqrt{2}+3}{2\sqrt{2}+1}\\y=\frac{2-2\sqrt{2}}{2\sqrt{2}+1}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=\frac{1+5\sqrt{2}}{7}\\y=\frac{6\sqrt{2}-10}{7}\end{matrix}\right.\)
b) Để x + y > 0 thì :
\(\frac{m+3}{2m+1}+\frac{m^2-2m}{2m+1}>0\Leftrightarrow\frac{m^2-m+3}{2m+1}>0\)
Lại có :
\(m^2-m+3=m^2-m+\frac{1}{4}+\frac{11}{4}=\left(m-\frac{1}{2}\right)^2+\frac{11}{4}>0\)
\(\Rightarrow2m+1>0\Leftrightarrow m>-\frac{1}{2}\)
Thay x = y = a vào hệ , ta có :
\(a=\frac{m+3}{2m+1}=\frac{m^2-2m}{2m+1}\Rightarrow m+3=m^2-2m\)
\(\Leftrightarrow m^2-3m-3=0\left(1\right)\)
Δ = 9 + 4.3.1 = 21 > 0
Vậy pt có 2 nghiệm phân biệt :
\(m_1=\frac{3+\sqrt{21}}{2}\left(tm\right);m_2=\frac{3-\sqrt{21}}{2}\left(tm\right)\)
Để hệ có nghiệm duy nhất thỏa mãn x + y > 0 thì m = ...
a, Để hpt có nghiệm\(\left(x,y\right)=\left(-2;3\right)\) thì:
\(\left\{{}\begin{matrix}-2+3m=4\\-2n+4=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n=3\\m=2\end{matrix}\right.\)
b,Để hệ phương trình vô nghiệm thì:
\(\frac{1}{n}=m=\frac{4}{-3}\)
\(\Rightarrow m=\frac{4}{-3};n=-\frac{3}{4}\)
Vậy \(m=\frac{4}{-3};n=-\frac{3}{4}\) thì hệ phương trình có vô số nghiệm
Ý a thì thay x=2 vào pt rồi tìm m xong rồi tìm nghiệm còn lại
Ý b tính denta hoặc denta' nếu lớn hoặc bằng k thì có nghiệm
Chọn B
B