Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Để hpt đã cho vô nghiệm thì m = 1 (lật sách trang 25 là hiểu)
Bài 2 :
Để hpt đã cho có vô số nghiệm thì m = 1
Câu nào biết thì mink làm, thông cảm !
Bài 1:
1) Cho \(a=1\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}2x=5\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\\frac{5}{2}+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{1}{2}\end{cases}}\)
2) Cho \(a=\sqrt{3}\) ta được:
\(\hept{\begin{cases}x-y=2\\x+y=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x\sqrt{3}-y=2\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}3x-y\sqrt{3}=2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}4x=3+2\sqrt{3}\\x+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\\frac{3+2\sqrt{3}}{4}+y\sqrt{3}=3\end{cases}}\) \(\Leftrightarrow\) \(\hept{\begin{cases}x=\frac{3+2\sqrt{3}}{4}\\y=\frac{-2+3\sqrt{3}}{4}\end{cases}}\)
Bữa sau làm tiếp
1)
\(\left\{{}\begin{matrix}x+y=4\\2x+3y=m\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x+3y=12\\2x+3y=m\end{matrix}\right.\)
trừ 2 vế của pt cho nhau ta tìm được
\(\left\{{}\begin{matrix}x=12-m\\y=m-8\end{matrix}\right.\)
để \(\left\{{}\begin{matrix}x>0\\y< 0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}m< 12\\m< 8\end{matrix}\right.\Rightarrow}m< 8}\)
Bài 1.
\(\left\{{}\begin{matrix}x-3y=5-2m\\2x+y=3\left(m+1\right)\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-3y=5-2m\\6x+3y=9m+9\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m+14\\x-3y=5-2m\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\m+2-3y=5-2m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\-3y=-3m+3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=m+2\\y=m-1\end{matrix}\right.\)
\(x_0^2+y_0^2=9m\)
\(\Leftrightarrow\left(m+2\right)^2+\left(m-1\right)^2=9m\)
\(\Leftrightarrow m^2+4m+4+m^2-2m+1-9m=0\)
\(\Leftrightarrow2m^2-7m+5=0\)
\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m=\dfrac{5}{2}\end{matrix}\right.\) ( Vi-ét )
x=(2m+3)/(m^2+1)
y=(3m-2)/(m^2+1)
y=x-1<=> (3m-2)/(m^2+1)=(2m+3-m^2-1)/(m^2+1)
<=>m^2+m-4=0=>\(\left[\begin{matrix}m=\frac{-1-\sqrt{17}}{2}\\m=\frac{-1+\sqrt{17}}{2}\end{matrix}\right.\)
Câu 3:
\(\left\{{}\begin{matrix}mx+4y=9\\mx+m^2y=8m\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}mx+4y=9\\\left(m^2-4\right)y=8m-9\end{matrix}\right.\)
Để hpt đã cho có nghiệm \(\Leftrightarrow m\ne\pm2\)
Khi đó ta có: \(\left\{{}\begin{matrix}y=\frac{8m-9}{m^2-4}\\x=8-my=8-\frac{8m^2-9m}{m^2-4}=\frac{9m-32}{m^2-4}\end{matrix}\right.\)
\(2x+y+\frac{38}{m^2-4}=3\)
\(\Leftrightarrow\frac{18m-64}{m^2-4}+\frac{8m-9}{m^2-4}+\frac{38}{m^2-4}=3\)
\(\Leftrightarrow26m-35=3m^2-12\)
\(\Leftrightarrow3m^2-26m+23=0\Rightarrow\left[{}\begin{matrix}m=1\\m=\frac{23}{3}\end{matrix}\right.\)
Câu 4:
\(\left\{{}\begin{matrix}m^2x-my=2m^2\\4x-my=m+6\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left(m^2-4\right)x=2m^2-m-6\\4x-my=m+6\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\left(m-2\right)\left(m+2\right)x=\left(m-2\right)\left(2m+3\right)\\4x-my=m+6\end{matrix}\right.\)
- Với \(m=-2\) hệ vô nghiệm
- Với \(m=2\) hệ có vô số nghiệm thỏa mãn \(2x-y=4\)
- Với \(m\ne\pm2\) hệ có nghiệm duy nhất:
\(\left\{{}\begin{matrix}x=\frac{2m+3}{m+2}\\y=mx-2m=\frac{2m^2+3m-2m^2-4m}{m+2}=\frac{-m}{m+2}\end{matrix}\right.\)
Câu 1: ĐKXĐ \(\left\{{}\begin{matrix}x\ne1\\y\ne-1\end{matrix}\right.\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{x-1}=u\\\frac{1}{y+1}=v\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}2u+v=7\\5u-2v=4\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4u+2v=14\\5u-2v=4\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}u=2\\v=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}\frac{1}{x-1}=2\\\frac{1}{y+1}=3\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x-1=\frac{1}{2}\\y+1=\frac{1}{3}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\frac{3}{2}\\y=-\frac{2}{3}\end{matrix}\right.\)
Câu 2:
Để hệ có nghiệm (x;y)=\(\left(2;-1\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}2m.2-\left(m+1\right).\left(-1\right)=m-n\\\left(m+2\right).2+3n\left(-1\right)=2m-3\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}4m+n=-1\\3n=7\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=\frac{7}{3}\\m=\frac{5}{6}\end{matrix}\right.\)
b:
Sửa đê; x^2+y^2=1
=>3x=m-my và x(m-1)+2y=m-1
=>x=-1/3my+1/3m và (m-1)(-1/3my+1/3m)+2y=m-1
=>x=-1/3my+1/3m và \(y\cdot\dfrac{-1}{3}m^2+\dfrac{1}{3}m^2+\dfrac{1}{3}my-\dfrac{1}{3}m+2y=m-1\)
=>\(\left\{{}\begin{matrix}x=\dfrac{-1}{3}my+\dfrac{1}{3}m\\y\left(-\dfrac{1}{3}m^2+\dfrac{1}{3}m+2\right)=m-1-\dfrac{1}{3}m^2+\dfrac{1}{3}m=-\dfrac{1}{3}m^2+\dfrac{4}{3}m-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y\cdot\left(-m^2+m+6\right)=-m^2+4m-3\\x=-\dfrac{1}{3}my+\dfrac{1}{3}m\end{matrix}\right.\)
=>y*(m-3)(m-2)=(m-3)(m-1) và x=-1/3my+1/3m
Nếu m=3 thì hệ có vô số nghiệm
nếu m=2 thì hệ vô nghiệm
Nếu m<>3; m<>2 thì hệ có nghiệm duy nhất là:
\(\left\{{}\begin{matrix}y=\dfrac{m-1}{m-2}\\x=-\dfrac{1}{3}\cdot\dfrac{m^2-m}{m-2}+\dfrac{m}{3}=\dfrac{-m^2+m}{3m-6}+\dfrac{m}{3}=\dfrac{-m^2+m+m^2-2m}{3\left(m-2\right)}=\dfrac{-m}{3\left(m-2\right)}\end{matrix}\right.\)
x^2+y^2=1
=>(m-1/m-2)^2++(-m/3m-6)^2=1
=>\(\dfrac{\left(m-1\right)^2}{\left(m-2\right)^2}+\dfrac{m^2}{9\left(m-2\right)^2}=1\)
=>9(m-1)^2+m^2=9(m-2)^2
=>9m^2-18m+9+m^2=9m^2-36m+36
=>m^2-18m+9=-36m+36
=>m^2+18m-27=0
=>\(m=-9\pm6\sqrt{3}\)
a, Để hpt có nghiệm\(\left(x,y\right)=\left(-2;3\right)\) thì:
\(\left\{{}\begin{matrix}-2+3m=4\\-2n+4=-3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}n=3\\m=2\end{matrix}\right.\)
b,Để hệ phương trình vô nghiệm thì:
\(\frac{1}{n}=m=\frac{4}{-3}\)
\(\Rightarrow m=\frac{4}{-3};n=-\frac{3}{4}\)
Vậy \(m=\frac{4}{-3};n=-\frac{3}{4}\) thì hệ phương trình có vô số nghiệm