Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\) (1)
Ta thấy ngay pt (1) có 1 nghiệm x = 2
Vậy nên ta có: \(x^3-\left(m+1\right)x^2-\left(2m^2-3m+2\right)x+2m\left(2m-1\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2+\left(1-m\right)x+\left(-2m^2+m\right)\right)=0\)
Để pt (1) có đúng hai nghiệm phân biệt thì pt \(\Leftrightarrow x^2+\left(1-m\right)x+\left(-2m^2+m\right)=0\) có 1 nghiệm duy nhất khác 2
Tức là: \(\hept{\begin{cases}\Delta=0\\4+2\left(1-m\right)+\left(-2m^2+m\right)\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(3m-1\right)^2=0\\-2m^2-m+6\ne0\end{cases}}\Leftrightarrow m=\frac{1}{3}\)
Vậy \(m=\frac{1}{3}.\)
Thầy/cô ơi làm sao để tách ra được nhân tử chung (x-2) vậy ạ
Bài 1 : a, Thay m = -2 vào phương trình ta được :
\(x^2+8x+4+6+5=0\Leftrightarrow x^2+8x+15=0\)
Ta có : \(\Delta=64-60=4>0\)
Vậy phương trình có 2 nghiệm phân biệt
\(x_1=\frac{-8-2}{2}=-5;x_2=\frac{-8+2}{2}=-3\)
b, Đặt \(f\left(x\right)=x^2-2\left(m-2\right)x+m^2-3m+5=0\)
\(f\left(-1\right)=\left(-1\right)^2-2\left(m-2\right)\left(-1\right)+m^2-3m+5=0\)
\(1+2\left(m-2\right)+m^2-3m+5=0\)
\(6+2m-4+m^2-3m=0\)
\(2-m+m^2=0\)( giải delta nhé )
\(\Delta=\left(-1\right)^2-4.2=1-8< 0\)
Vậy phương trình vô nghiệm
c, Để phương trình có nghiệm kép \(\Delta=0\)( tự giải :v )
Tham khảo:Cho phường trình x^2-(2m +3)x+m^2+2m+2=0. tìm m để pt trên có 2 nghiệm x1x2 thỏa x1=2x2?
Giải delta xác định m ta có phương trình cỉ có nghiệm khi m lớn hơn hoặc bằng -1/4
Hệ thức Vi-et cho:
x1 + x2 = 2m + 3
x1*x2 = m^2 + 2m + 2
Vì x1 = 2x2
=> x1 + x2 = 2x2 + x2 = 3x2 = 2m + 3 (1)
Và x1 * x2 = 2x2 * x2 = 2x2^2 = m^2 + 2m + 2 (2)
Từ (1) ta có: 3x2 = 2m + 3
<=> x2 = (2m + 3)/3
<=> x2^2 = {(2m + 3)/3}^2
<=> x2^2 = (4m^2 + 12m + 9) / 9 (3)
Từ (2) ta có: 2X^2 = m^2 + 2m + 2
<=> x2^2 = (m^2 + 2m + 2) / 2 (4)
Từ (3) và (4) ta có phương trình:
(4m^2 + 12m + 9) / 9 = (m^2 + 2m + 2) / 2
<=> 8m^2 + 24m + 18 = 9m^2 + 18m + 18
<=> m^2 - 6m = 0
<=> m (m - 6) = 0
<=> m = 0 (thoả)
hoặc m = 6 (thoả)
=> Khi m = 0 hoặc m = 6 thì phương trình đã cho có hai nghiệm x1 và x2 và x1 = 2x2