Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2(m-1)x+3=2m-5
=>x(2m-2)=2m-5-3=2m-8
a: (1) là phương trình bậc nhất một ẩn thì m-1<>0
=>m<>1
b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0
=>m=1
c: Để (1) có nghiệm duy nhất thì m-1<>0
=>m<>1
d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0
=>Ko có m thỏa mãn
e: 2x+5=3(x+2)-1
=>3x+6-1=2x+5
=>x=0
Khi x=0 thì (1) sẽ là 2m-8=0
=>m=4
\(\Leftrightarrow\left(2m+1\right)x-mx+3m=7m+5\)
\(\Leftrightarrow\left(m+1\right)x=4m+5\)
Pt vô nghiệm khi: \(\left\{{}\begin{matrix}m+1=0\\4m+5\ne0\end{matrix}\right.\) \(\Leftrightarrow m=-1\)
Pt vô số nghiệm khi: \(\left\{{}\begin{matrix}m+1=0\\4m+5=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn yêu cầu
\(\left(2x+m\right)\left(x-1\right)-2x^2+mx-2=0\)
\(\Leftrightarrow2x^2-2x+mx-m-2x^2+mx-2=0\)
\(\Leftrightarrow-2x+2mx-m-2=0\)
\(\Leftrightarrow2x\left(m-1\right)=m+2\)
\(\Leftrightarrow x=\dfrac{m+2}{2\left(m-1\right)}\)
Để phương trình có nghiệm là 1 số không âm thì:
\(\left\{{}\begin{matrix}m\ne1\\\dfrac{m+2}{2\left(m-1\right)}\ge0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m+2\ge0\\2\left(m-1\right)\ge0\end{matrix}\right.hay\left\{{}\begin{matrix}m+2\le0\\2\left(m-1\right)< 0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ge-2\\m>1\end{matrix}\right.hay\left\{{}\begin{matrix}m\le-2\\m< 1\end{matrix}\right.\)
\(\Leftrightarrow m>1\) hay \(m\le-2\).
-Vậy \(m>1\) hay \(m\le-2\) thì phương trình có nghiệm là 1 số không âm.
\(\frac{1-x}{x-m}+\frac{x-2}{x+m}=\frac{2\left(x-m\right)-2}{m^2-x^2}\)(ĐK:\(x\ne\pm m\))
\(\Leftrightarrow\frac{\left(1-x\right)\left(x+m\right)+\left(x-2\right)\left(x-m\right)}{\left(x+m\right)\left(x-m\right)}-\frac{2\left(x-m\right)-2}{m^2-x^2}=0\)
\(\Leftrightarrow\frac{x+m-x^2-mx+x^2-mx-2x+2m}{x^2-m^2}+\frac{2x-2m-2}{x^2-m^2}=0\)
\(\Leftrightarrow\frac{-\left(2m+2\right)x+3m+2x-2m-2}{x^2-m^2}=0\)
\(\Leftrightarrow\frac{-2m.x+m-2}{x^2-m^2}=0\)
\(\Rightarrow-2m.x+m-2=0\)
\(\Leftrightarrow x=\frac{m-2}{2m}\)
Để pt vô nghiệm thì \(\frac{m-2}{2m}\) không xác định
Suy ra:\(2m=0\)
Nên \(m=0\)
\(mx-m+2nx-n-x=2\)
\(\Leftrightarrow\left(m+2n-1\right)x=m+n+2\)
Pt đã cho có vô số nghiệm khi và chỉ khi:
\(\left\{{}\begin{matrix}m+2n-1=0\\m+n+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=3\\m=-5\end{matrix}\right.\)