K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
16 tháng 1 2021

\(mx-m+2nx-n-x=2\)

\(\Leftrightarrow\left(m+2n-1\right)x=m+n+2\)

Pt đã cho có vô số nghiệm khi và chỉ khi:

\(\left\{{}\begin{matrix}m+2n-1=0\\m+n+2=0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}n=3\\m=-5\end{matrix}\right.\)

2(m-1)x+3=2m-5

=>x(2m-2)=2m-5-3=2m-8

a: (1) là phương trình bậc nhất một ẩn thì m-1<>0

=>m<>1

b: Để (1) vô nghiệm thì m-1=0 và 2m-8<>0

=>m=1

c: Để (1) có nghiệm duy nhất thì m-1<>0

=>m<>1

d: Để (1) có vô số nghiệm thì 2m-2=0 và 2m-8=0

=>Ko có m thỏa mãn

e: 2x+5=3(x+2)-1

=>3x+6-1=2x+5

=>x=0

Khi x=0 thì (1) sẽ là 2m-8=0

=>m=4

Tham khảo:

Giải và biện luận phương trình? 
(m^2+2)x= x+2m -3 
m(x-m-3)= m(x-2)+6 
m(x-m)=x+m-2 
m^2(x-1)+m= x(3m-2) 

:  4 bài toán này đều là dạng bài Giải và biện luận PT bậc nhất 
Nên cách giải cũng đơn giản thôi, bạn chỉ cần chuyển các PT trên về dạng ax+b=0 là được. Mình sẽ làm thử cho bạn xem nha? 
1> PT<=> (m^2+1)x -2m+3=0 
Dễ thấy : a=m^2+1# 0 ( với mọi giá trị của m ) 
Do đó : PT luôn có nghiệm duy nhất x=(2m-3)/(m^2+1) 
2> PT có dạng : -m^2 - 3m = -2m + 6 
<=> -m^2 - m -6 =0 
vô nghiệm với mọi giá trị của m 
=> PT đã cho luôn vô nghiệm với mọi giá trị của m 
3> PT <=> (m-1)x -m^2-m+2 = 0 
TH1 : m-1# 0 <=> m # 1 
thì PT luôn có nghiệm duy nhất : x=(m^2+m-2)/(m-1) = m+2 
TH2 : m-1=0 <=> m = 1 
thì PT có dạng : 0x+0 = 0 
=> PT có vô số nghiệm ( hay PT có nghiệm x tùy ý ) 
Kết luận : 
Với m # 1 : PT có nghiệm duy nhất x = m+2 
Với m=1 : PT có vô số nghiệm 
4> (m^2-3m+2)x -m^2+m = 0 
TH1 : m^2-3m+2 = 0 <=> m=1 hoặc m=2 
- Nếu m=1 thì PT có dạng : 0x+0=0 
=> PT có vô số nghiệm 
- Nếu m=2 thì PT có dạng : 0x-2=0 
=> PT vô nghiệm 
TH2 : m^2-3m+2 # <=> m # 1 và m # 2 
thì PT có nghiệm duy nhất x=(m^2-m)/(m^2-3m+2) = m/(m-2) 
Kết luận : 
Với m=1 : PT có vô số nghiệm 
Với m=2 :PT vô nghiệm 
Với m # 1 và m # 2 thì PT có nghiệm duy nhất x=m/(m-2) 
Chúc bạn thành công trên con đường học tập của mình.

2 tháng 2 2019

\(\frac{1-x}{x-m}+\frac{x-2}{x+m}=\frac{2\left(x-m\right)-2}{m^2-x^2}\)(ĐK:\(x\ne\pm m\))

\(\Leftrightarrow\frac{\left(1-x\right)\left(x+m\right)+\left(x-2\right)\left(x-m\right)}{\left(x+m\right)\left(x-m\right)}-\frac{2\left(x-m\right)-2}{m^2-x^2}=0\)

\(\Leftrightarrow\frac{x+m-x^2-mx+x^2-mx-2x+2m}{x^2-m^2}+\frac{2x-2m-2}{x^2-m^2}=0\)

\(\Leftrightarrow\frac{-\left(2m+2\right)x+3m+2x-2m-2}{x^2-m^2}=0\)

\(\Leftrightarrow\frac{-2m.x+m-2}{x^2-m^2}=0\)

\(\Rightarrow-2m.x+m-2=0\)

\(\Leftrightarrow x=\frac{m-2}{2m}\)

Để pt vô nghiệm thì \(\frac{m-2}{2m}\) không xác định

Suy ra:\(2m=0\)

Nên \(m=0\)

20 tháng 3 2020

\(\frac{1-x}{x-m}+\frac{x-2}{x+m}=\frac{2\left(x-m\right)-2}{m^2-x^2}\left(1\right)\)

\(ĐKXĐ\hept{\begin{cases}x+m\ne0\\x-m\ne0\end{cases}\Leftrightarrow x\ne\pm m}\)

\(\Rightarrow\left(1-x\right)\left(x+m\right)+\left(x-2\right)\left(x-m\right)=2-2\left(x-m\right)\)

<=> (2m-1)x=m-2(*)

+)Nếu \(2m-1=0\Leftrightarrow m=\frac{1}{2}\)

Ta có: (*) \(\Leftrightarrow0x=\frac{-3}{2}\)(vô nghiệm)

+)Nếu \(m\ne\frac{1}{2}\)ta có (*) \(\Leftrightarrow x=\frac{m-2}{2m-1}\)

Xét x=m

\(\Leftrightarrow\frac{m-2}{2m-1}=m\Leftrightarrow m-2=2m^2-m\)

\(\Leftrightarrow2m^2-2m+2=0\)

<=> m2-m+1=0

\(\Leftrightarrow\left(m-\frac{1}{2}\right)^2+\frac{3}{4}=0\)(không xảy ra vì vế trái luôn lớn hơn 0)

<=> \(\frac{m-2}{2m-1}\)<=> m-2=-2m2+m

<=> m2=1 <=> \(m=\pm1\)

Vậy phương trình vô nghiệm khi \(\orbr{\begin{cases}m=\frac{1}{2}\\m=\pm1\end{cases}}\)

20 tháng 3 2020

Thanks Đào Phạm Nhật Quỳnh nhé

NV
6 tháng 4 2021

\(\Leftrightarrow\left(2m+1\right)x-mx+3m=7m+5\)

\(\Leftrightarrow\left(m+1\right)x=4m+5\)

Pt vô nghiệm khi: \(\left\{{}\begin{matrix}m+1=0\\4m+5\ne0\end{matrix}\right.\) \(\Leftrightarrow m=-1\)

Pt vô số nghiệm khi: \(\left\{{}\begin{matrix}m+1=0\\4m+5=0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn yêu cầu

7 tháng 4 2021

Tks

28 tháng 3 2020

x+2/x-m=x+1/x-1( ĐK : x khác m; x khác 1 )

<=> ( x+2)(x-1)=(x+1)(x-m)

<=> x^2+x-2=x^2-xm+x-m

<=>m+xm=2

<=>m(x+1)=2

<=>m=2/x+1

để pt vô no thì m khác 2/x+1

ta có : 

2chia hết (x+1) => x+1 thuộc Ư(2) <=> (x+1) thuộc {+-1;+-2}

=>(2/x+1) thuộc {2;-2;1;-1}

vậy để pt vô no thì m khác 2;-2;1;-1