Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* \(2\left(x+1\right)-1=3-\left(1-2x\right)\)
\(\Leftrightarrow2x+2-1=3-1+2x\)
\(\Leftrightarrow2x-2x=3-1-2+1\)
\(\Leftrightarrow0x=1\left(\exists x\inℝ\right)\)
Vậy tập nghiệm pt: \(S=\varnothing\)
* Ta có: \(mx=2-x\Leftrightarrow mx+x=2\Leftrightarrow\left(m+1\right)x=2\)
Pt vô nghiệm <=> m+1=0 <=> m=-1
* giải phương trình:
2(x+1)-1=3-(1-2x)
2x+2-1=3-1+2x
2x+1=2+2x
-> Phương trình này vô ngiệm
* Tìm m để phương trình sau vô nghiệm
Ta có \(mx=2-x\)
\(\Leftrightarrow\left(m+1\right)x=2\)
\(\Leftrightarrow x=\frac{2}{m+1}\)
Để \(\frac{2}{m+1}\)vô nghiệm thì m+1 phải bằng 0
=> m=0-1=-1
=> Để phương trình đó vô nghiệm thì m=-1
\(VT=\left|x-1\right|+\left|2-x\right|\ge\left|x-1+2-x\right|=1\)
\(VP=-4x^2+12x-9-1=-\left(2x-3\right)^2-1\le-1\)
\(\Rightarrow VT>VP\) ; \(\forall x\)
\(\Rightarrow\) Pt đã cho luôn luôn vô nghiệm
b.
\(\Leftrightarrow\left(m^2+3m\right)x=-m^2+4m+21\)
\(\Leftrightarrow m\left(m+3\right)x=\left(7-m\right)\left(m+3\right)\)
Để pt có nghiệm duy nhất \(\Rightarrow m\left(m+3\right)\ne0\Rightarrow m\ne\left\{0;-3\right\}\)
Khi đó ta có: \(x=\dfrac{\left(7-m\right)\left(m+3\right)}{m\left(m+3\right)}=\dfrac{7-m}{m}\)
Để nghiệm pt dương
\(\Leftrightarrow\dfrac{7-m}{m}>0\Leftrightarrow0< m< 7\)
Lời giải:
$x^2-9=0\Leftrightarrow x=\pm 3$
Để PT vô nghiệm thì:
\(\left\{\begin{matrix}
2.3+m=0\\
2(-3)+m=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix}
m=6\\
m=-6\end{matrix}\right.\) (vô lý, $m$ không thể đồng thời nhận 2 giá trị cùng lúc)
Do đó không tồn tại $m$ để PT vô nghiệm.