Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
* \(2\left(x+1\right)-1=3-\left(1-2x\right)\)
\(\Leftrightarrow2x+2-1=3-1+2x\)
\(\Leftrightarrow2x-2x=3-1-2+1\)
\(\Leftrightarrow0x=1\left(\exists x\inℝ\right)\)
Vậy tập nghiệm pt: \(S=\varnothing\)
* Ta có: \(mx=2-x\Leftrightarrow mx+x=2\Leftrightarrow\left(m+1\right)x=2\)
Pt vô nghiệm <=> m+1=0 <=> m=-1
* giải phương trình:
2(x+1)-1=3-(1-2x)
2x+2-1=3-1+2x
2x+1=2+2x
-> Phương trình này vô ngiệm
* Tìm m để phương trình sau vô nghiệm
Ta có \(mx=2-x\)
\(\Leftrightarrow\left(m+1\right)x=2\)
\(\Leftrightarrow x=\frac{2}{m+1}\)
Để \(\frac{2}{m+1}\)vô nghiệm thì m+1 phải bằng 0
=> m=0-1=-1
=> Để phương trình đó vô nghiệm thì m=-1
a) 2x-mx+2m-1=0
\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)
*Nếu \(m=2\)thay vào (1) ta được:
\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)
Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.
*Nếu \(m\ne2\)thì phương trình (1) có nghiệm \(x=\frac{1-2m}{2-m}\)
Vậy \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)
b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé
b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)
*Nếu \(m\ne2\).....pt có ngiệm x=m+2
*Nếu \(m=2\)....pt có vô số nghiệm
Vậy ....
c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)
Nếu \(m=2\).... pt có vô số nghiệm
Nếu \(m=-2\)..... pt vô nghiệm
Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)
Để nghiệm \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)
Vậy m<-2