K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 2 2021

\(2\left(x+1\right)-1=3-\left(1-2x\right)\)

\(\Leftrightarrow2x+2-1=3-1+2x\)

\(\Leftrightarrow2x-2x=3-1-2+1\)

\(\Leftrightarrow0x=1\left(\exists x\inℝ\right)\)

Vậy tập nghiệm pt: \(S=\varnothing\)

* Ta có: \(mx=2-x\Leftrightarrow mx+x=2\Leftrightarrow\left(m+1\right)x=2\)

Pt vô nghiệm <=>  m+1=0 <=> m=-1

20 tháng 2 2021

* giải phương trình:

   2(x+1)-1=3-(1-2x)

     2x+2-1=3-1+2x

       2x+1=2+2x

 -> Phương trình này vô ngiệm

* Tìm m để phương trình sau vô nghiệm

           Ta có \(mx=2-x\)

                    \(\Leftrightarrow\left(m+1\right)x=2\)

                    \(\Leftrightarrow x=\frac{2}{m+1}\)

     Để \(\frac{2}{m+1}\)vô nghiệm thì m+1 phải bằng 0

   => m=0-1=-1

   => Để phương trình đó vô nghiệm thì m=-1

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<

4 tháng 1 2020

a) 2x-mx+2m-1=0

\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)

*Nếu \(m=2\)thay vào (1) ta được:

\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)

Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.

*Nếu \(m\ne2\)thì phương trình (1) có nghiệm  \(x=\frac{1-2m}{2-m}\)

Vậy  \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)

b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé 

b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)

*Nếu \(m\ne2\).....pt có ngiệm x=m+2

*Nếu \(m=2\)....pt có vô số nghiệm

Vậy ....

c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)

Nếu \(m=2\).... pt có vô số nghiệm

Nếu \(m=-2\)..... pt vô nghiệm

Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)

Để nghiệm  \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)

Vậy m<-2