K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 1

1. Khi \(m=-1\Rightarrow5x+2>0\Rightarrow x>-\dfrac{2}{5}\), suy ra \(f\left(x\right)>0\) không có tập nghiệm là \(R\).

Khi \(m\ne-1,f\left(x\right)>0\forall x\in R\) khi:

\(\left\{{}\begin{matrix}m+1>0\\\Delta=5^2-4\cdot2\left(m+1\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m>-1\\m>\dfrac{17}{8}\end{matrix}\right.\)

Vậy: \(m>\dfrac{17}{8}\)

 

2. Cũng chia ra hai trường hợp khi \(m=-1,m\ne-1\) như trên.

Khi \(m\ne-1,f\left(x\right)< 0\forall x\in R\) khi:

\(\left\{{}\begin{matrix}m+1< 0\\\Delta=5^2-4\cdot2\left(m+1\right)< 0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -1\\m>\dfrac{17}{8}\end{matrix}\right.\) (vô lí)

Vậy: \(m\in\varnothing\)

 

3, 4. Làm tương tự như hai ý 1, 2 nhé.

TH1: m=-1

\(\Leftrightarrow f\left(x\right)=\left(-1+1\right)x^2+5x+2\)

=>f(x)=5x+2

=>Khi m=-1 thì f(x)>0 khi x>-2/5; f(x)>=0 khi x>=-2/5; f(x)<0 khi x<-2/5; f(x)<=0 khi x<=-2/5

=>Loại

TH2: \(m\ne-1\)

\(f\left(x\right)=\left(m+1\right)x^2+5x+2\)

\(\text{Δ}=5^2-4\cdot\left(m+1\right)\cdot2\)

\(=25-8m-8=-8m+17\)

Để f(x)>=0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-8m+17< =0\\m+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-8m< =-17\\m>-1\end{matrix}\right.\Leftrightarrow m>=\dfrac{17}{8}\)

Để f(x)<=0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< =0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-8m+17< =0\\m+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=\dfrac{17}{8}\\m< -1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

Để f(x)>0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-8m+17< 0\\m+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>\dfrac{17}{8}\\m>-1\end{matrix}\right.\Leftrightarrow m>\dfrac{17}{8}\)

Để f(x)<0 với mọi x thì \(\left\{{}\begin{matrix}\text{Δ}< 0\\a< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}-8m+17< 0\\m+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>\dfrac{17}{8}\\m< -1\end{matrix}\right.\Leftrightarrow m\in\varnothing\)

HQ
Hà Quang Minh
Giáo viên
26 tháng 9 2023

a) Tam thức \(2{x^2} + 3x + m + 1\) có \(\Delta  = {3^2} - 4.2.\left( {m + 1} \right) = 1 - 8m\)

Vì \(a = 2 > 0\) nên để \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(\Delta  < 0 \Leftrightarrow 1 - 8m < 0 \Leftrightarrow m > \frac{1}{8}\)

Vậy khi \(m > \frac{1}{8}\) thì \(2{x^2} + 3x + m + 1 > 0\) với mọi \(x \in \mathbb{R}\)

b) Tam thức \(m{x^2} + 5x - 3\) có \(\Delta  = {5^2} - 4.m.\left( { - 3} \right) = 25 + 12m\)

Đề \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi và chỉ khi \(m < 0\) và \(\Delta  = 25 + 12m \le 0 \Leftrightarrow m \le  - \frac{{25}}{{12}}\)

Vậy \(m{x^2} + 5x - 3 \le 0\) với mọi \(x \in \mathbb{R}\) khi \(m \le  - \frac{{25}}{{12}}\)

Câu 2:

a: Sai

b: Sai

c: Sai

d: Đúng

14 tháng 1

\(f\left(x\right)>0\forall x\in R\)

\(\Rightarrow\left\{{}\begin{matrix}m^2+2>0\left(LĐ\right)\\\Delta'=\left[-\left(m-1\right)\right]^2-\left(m^2+2\right)\cdot1< 0\end{matrix}\right.\)

\(\Rightarrow m^2-2m+1-m^2-2< 0\)

\(\Leftrightarrow m>-\dfrac{1}{2}\)

Vậy: \(m>-\dfrac{1}{2}\).

10 tháng 3 2023

\(f\left(x\right)=\left(m-4\right)x^2+\left(m+1\right)x+2m-1\)

\(f\left(x\right)< 0,\forall x\in R\Leftrightarrow\left\{{}\begin{matrix}a< 0\\\Delta< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m-4< 0\\\left(m+1\right)^2-4\left(m-4\right)\left(2m-1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\m^2+2m+1-4\left(2m^2-m-8m+4\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow m^2+2m+1-8m^2+36m-16< 0\)

\(\Leftrightarrow-7m^2+38m-15< 0\)

\(\Leftrightarrow\left\{{}\begin{matrix}m< 4\\\left[{}\begin{matrix}m< \dfrac{3}{7}\\m>5\end{matrix}\right.\end{matrix}\right.\)

\(KL:m\in\left(5;+\infty\right)\)

b: A là tập con của B

A là tập con của C

A là tập con của D và ngược lại

NV
6 tháng 3 2023

- Với \(m=-1\) thỏa mãn

- Với \(m\ne-1\) ta có \(\left(m+1\right)x^2-2\left(m+1\right)x+4\ge0;\forall x\) khi và chỉ khi:

\(\left\{{}\begin{matrix}m+1>0\\\Delta'=\left(m+1\right)^2-4\left(m+1\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\\left(m+1\right)\left(m-3\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-1\\-1< m\le3\end{matrix}\right.\) \(\Rightarrow-1< m\le3\)

Kết hợp lại ta được \(-1\le m\le3\)

19 tháng 12 2022

\(\Delta=\left(2m-2\right)^2-4\cdot1\cdot4=4m^2-8m+16-16=4m^2-8m\)

Để BPT luôn đúng thì 4m^2-8m<0

=>4m(m-2)<0

=>0<m<2

VT
20 tháng 12 2022

\(x^2+2\left(m-1\right)x+4>0\forall x\inℝ\)

\(\Leftrightarrow\Delta'=\left(m-1\right)^2-4< 0\)

\(\Leftrightarrow\left(m-3\right)\left(m+1\right)< 0\Leftrightarrow-1< m< 3\).