K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
9 tháng 8 2020

\(y'=f\left(x\right)=3x^2-2\left(3m+1\right)x+1\)

Để hàm nghịch biến trên (1;3) \(\Leftrightarrow y'=0\) có 2 nghiệm pb thỏa mãn \(x_1\le1< 3\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(1\right)\le0\\f\left(3\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}4-2\left(3m+1\right)\le0\\28-6\left(3m+1\right)\le0\end{matrix}\right.\)

\(\Rightarrow m\ge\frac{11}{9}\)

AH
Akai Haruma
Giáo viên
12 tháng 8 2020

Lời giải:

$y'=f'(x)=x^2+2(m-2)x-(m+1)$

$\Delta'=(m-2)^2+(m+1)=m^2-3m+5>0$ với mọi $m\in\mathbb{R}$ nên $f'(x)=0$ luôn có 2 nghiệm phân biệt $x_1,x_2$. Ta có bảng BT của $f(x)$ (trường hợp $a=\frac{1}{3}>0$:

Để $f(x)$ nghịch biến trên $(-5;1)$ và $(-2;4)$ thì $x_1\leq -5$ và $x_2\geq 4$

\(\Leftrightarrow \left\{\begin{matrix} (x_1+5)(x_2+5)\leq 0\\ (x_1-4)(x_2-4)\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x_1x_2+5(x_1+x_2)+25\leq 0\\ x_1x_2-4(x_1+x_2)+16\geq 0\end{matrix}\right.\)

\(\Leftrightarrow \left\{\begin{matrix} -(m+1)+10(2-m)+25\leq 0\\ -(m+1)-8(2-m)+16\geq 0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} -11m+44\leq 0\\ 7m-1\geq 0\end{matrix}\right.\Leftrightarrow 4\leq m\leq \frac{1}{7}\) (vô lý)

 

NV
12 tháng 8 2020

\(y'=f\left(x\right)=x^2+2\left(m-2\right)x-m-1\)

Để hàm nghịch biến trên các khoảng đã cho

\(\Leftrightarrow y'=0\) có 2 nghiệm pb thỏa mãn \(x_1\le-5< 4\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(-5\right)\le0\\f\left(4\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}24-10\left(m-2\right)-m\le0\\15+8\left(m-2\right)-m\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge4\\m\le\frac{1}{7}\end{matrix}\right.\) không tồn tại m thỏa mãn

5 tháng 8 2020

Có tồn tại m mà bạn

NV
5 tháng 8 2020

\(y'=f\left(x\right)=3x^2-2\left(m+2\right)x+2m-3\)

Do \(a=3>0\Rightarrow\) hàm có khoảng nghịch biến duy nhất \(\left(x_1;x_2\right)\) khi \(\Delta>0\)

Để hàm số nghịch biến trên khoảng đã cho:

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'=\left(m+2\right)^2-3\left(2m-3\right)>0\\x_1\le-2< 5\le x_2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m^2-2m+13>0\left(luôn-đúng\right)\\f\left(-2\right)\le0\\f\left(5\right)\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}6m+17\le0\\-8m+52\le0\end{matrix}\right.\) \(\Rightarrow\) không tồn tại m thỏa mãn

NV
10 tháng 8 2020

\(y'=f\left(x\right)=x^2+2\left(m+1\right)x+3m-2\)

Để hàm số nghịch biến trên \(\left[-8;8\right]\Leftrightarrow f\left(x\right)=0\) có 2 nghiệm pb thỏa mãn \(x_1\le-8< 8\le x_2\)

\(\Leftrightarrow\left\{{}\begin{matrix}f\left(-8\right)\le0\\f\left(8\right)\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}64-16\left(m+1\right)+3m-2\le0\\64+16\left(m+1\right)+3m-2\le0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ge\frac{46}{13}\\m\ge-\frac{78}{19}\end{matrix}\right.\) \(\Rightarrow m\ge\frac{46}{13}\)

11 tháng 8 2018

y'=2x2-2(2m-3)x+2(m2-3m)=2(x-m)(x-m+3) => h/s nghịch biến trên (m-3; m) => YCBT <=> m-3 =<1 và 3=<m <=> 3=<m=<4

5 tháng 1 2019

.

22 tháng 8 2017

cái này đạo hàm xong là cô lập m là ra

Chọn B

NV
27 tháng 3 2019

\(y'=-x^2+2mx+3m+2\)

Để hàm số nghịch biến trên R \(\Rightarrow y'\le0\) \(\forall x\in R\)

\(\Rightarrow\Delta'\le0\Leftrightarrow m^2+3m+2\le0\Rightarrow-2\le m\le-1\)