\(\frac{1}{3}\)x3+mx2+(3m+2)+1 . Tìm tất cả các giá t...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 3 2019

\(y'=-x^2+2mx+3m+2\)

Để hàm số nghịch biến trên R \(\Rightarrow y'\le0\) \(\forall x\in R\)

\(\Rightarrow\Delta'\le0\Leftrightarrow m^2+3m+2\le0\Rightarrow-2\le m\le-1\)

NV
9 tháng 5 2019

\(y'=-x^2+2mx+3m+2\)

Để hàm số nghịch biến trên R khi và chỉ khi:

\(\Delta'=m^2+3m+2\le0\Rightarrow-2\le m\le-1\)

\(\Rightarrow\left\{{}\begin{matrix}a=-2\\b=-1\end{matrix}\right.\) \(\Rightarrow a-3b=1\)

28 tháng 7 2019
https://i.imgur.com/6aR3ny6.jpg
28 tháng 7 2019

bài 1 bạn dò lại xem. Còn bài 2 tương tự

8 tháng 4 2018

Chọn B.

Tập xác định 

Có 

Hàm số nghịch bến trên mỗi khoảng của tập xác định

31 tháng 3 2018

Chọn D

DD
3 tháng 6 2021

\(f'\left(x\right)=m^2x^4-mx^2+20x-\left(m^2-m-20\right)\)

Để hàm số đồng biến trên \(ℝ\)thì \(f'\left(x\right)\ge0,\)với mọi \(x\inℝ\).

Mà ta thấy \(f'\left(-1\right)=m^2-m-20-\left(m^2-m-20\right)=0\)

do đó \(x=-1\)là một điểm cực trị của hàm số \(f'\left(x\right)\).

Ta có: \(f''\left(x\right)=4m^2x^3-2mx+20\)

\(f''\left(-1\right)=0\Leftrightarrow-4m^2+2m+20=0\Leftrightarrow\orbr{\begin{cases}m=\frac{5}{2}\\m=-2\end{cases}}\).

Thử lại.

Với \(m=\frac{5}{2}\)\(f''\left(x\right)=25x^3-5x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\)

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Với \(m=-2\)\(f''\left(x\right)=16x^3+4x+20\)

\(f''\left(x\right)=0\Leftrightarrow x=-1\).

\(f'\left(-1\right)=0\)

do đó \(f'\left(x\right)\ge0\)thỏa mãn. 

Vậy tổng các giá trị của \(m\)là: \(\frac{5}{2}+\left(-2\right)=\frac{1}{2}\).

Chọn D. 

NV
13 tháng 3 2019

\(y'=-3x^2+6x+m\)

Để hàm số nghịch biến trên \(\left(0;+\infty\right)\Rightarrow y'\le0\) \(\forall x>0\)

\(\Rightarrow-3x^2+6x+m\le0\Leftrightarrow3x^2-6x\ge m\)

Đặt \(f\left(x\right)=3x^2-6x\Rightarrow m\le\min\limits_{\left(0;+\infty\right)}f\left(x\right)=f\left(1\right)=-3\)

\(\Rightarrow m\le-3\)

27 tháng 6 2018

D=R

y' = -3x2 +6x+m <0

Để hàm nghịch biến trên khoảng (0; +∞) thì

Δ>0 và x1<x2≤0

\(\left\{{}\begin{matrix}m>-3\\x1+x2\\x1\cdot x2>0\end{matrix}\right.< 0\)

9 tháng 5 2018

NV
22 tháng 6 2021

1.

\(y'=m-3cos3x\)

Hàm đồng biến trên R khi và chỉ khi \(m-3cos3x\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge3cos3x\) ; \(\forall x\)

\(\Leftrightarrow m\ge\max\limits_{x\in R}\left(3cos3x\right)\)

\(\Leftrightarrow m\ge3\)

NV
22 tháng 6 2021

2.

\(y'=1-m.sinx\)

Hàm đồng biến trên R khi và chỉ khi:

\(1-m.sinx\ge0\) ; \(\forall x\)

\(\Leftrightarrow1\ge m.sinx\) ; \(\forall x\)

- Với \(m=0\) thỏa mãn

- Với \(m< 0\Rightarrow\dfrac{1}{m}\le sinx\Leftrightarrow\dfrac{1}{m}\le\min\limits_R\left(sinx\right)=-1\)

\(\Rightarrow m\ge-1\)

- Với \(m>0\Rightarrow\dfrac{1}{m}\ge sinx\Leftrightarrow\dfrac{1}{m}\ge\max\limits_R\left(sinx\right)=1\)

\(\Rightarrow m\le1\)

Kết hợp lại ta được: \(-1\le m\le1\)