Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ngại viết quá hihi, mà hơi ngáo tí cái dạng này lm rồi mà cứ quên
bài trước mk bình luận bạn đọc chưa nhỉ
Cho e hỏi là vì sao khúc cuối có dấu bằng mà trên đề k có dấu bằng ạ?
Vì mình lấy giá trị nguyên bạn
Chính xác là \(-\frac{1}{4}< k< \frac{2020-\frac{\pi}{2}}{2\pi}\)
\(\Rightarrow-0,25< k< 321,243\) (1)
Nhưng k nguyên nên chỉ cần lấy khoảng ở số nguyên gần nhất, tức là \(0\le k\le321\)
\(\Leftrightarrow tanx\left(tanx-2\right)+m\left(tanx-2\right)=0\)
\(\Leftrightarrow\left(tanx-2\right)\left(tanx-m\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}tanx=2\\tanx=m\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=arctan\left(2\right)+k\pi\\tanx=m\left(1\right)\end{matrix}\right.\)
Do \(2>\sqrt{3}\Rightarrow\frac{\pi}{3}< arctan\left(2\right)< \frac{\pi}{2}\Rightarrow x=arctan\left(2\right)+k\pi\) có đúng 1 nghiệm trên khoảng đã cho
\(\Rightarrow\) Để pt đã cho có 3 nghiệm pb \(\Leftrightarrow tanx=m\) có 2 nghiệm pb
\(\Rightarrow\left\{{}\begin{matrix}m\ne2\\0\le m\le\sqrt{3}\end{matrix}\right.\) \(\Rightarrow0\le m\le\sqrt{3}\)
\(\Leftrightarrow\left(sin4x-cos4x\right)\left(sin4x+4cos4x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin4x-cos4x=0\\sin4x=-4cos4x\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(4x-\frac{\pi}{4}\right)=0\\tan4x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}4x-\frac{\pi}{4}=k\pi\\4x=arctan\left(-4\right)+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{16}+\frac{k\pi}{4}\\x=\frac{1}{4}arctan\left(-4\right)+\frac{k\pi}{4}\end{matrix}\right.\)
Pt có 4 nghiệm trên khoảng đã cho
a/
Đặt \(cosx=t\Rightarrow0< t\le1\)
\(\Rightarrow t^2-2mt+4\left(m-1\right)=0\)
\(\Leftrightarrow t^2-4-2m\left(t-2\right)=0\)
\(\Leftrightarrow\left(t-2\right)\left(t+2-2m\right)=0\)
\(\Leftrightarrow t=2m-2\)
\(\Rightarrow0< 2m-2\le1\Rightarrow1< m\le\frac{3}{2}\)
b.
\(x\in\left(-\frac{\pi}{2};\frac{\pi}{2}\right)\Rightarrow\frac{x}{2}\in\left(-\frac{\pi}{4};\frac{\pi}{4}\right)\)
Đặt \(sin\frac{x}{2}=t\Rightarrow-\frac{\sqrt{2}}{2}< t< \frac{\sqrt{2}}{2}\)
\(\Rightarrow4t^2+2t+m-2=0\Leftrightarrow4t^2+2t-2=-m\)
Xét \(f\left(t\right)=4t^2+2t-2\) trên \(\left(-\frac{\sqrt{2}}{2};\frac{\sqrt{2}}{2}\right)\)
\(f\left(-\frac{\sqrt{2}}{2}\right)=-\sqrt{2}\) ; \(f\left(\frac{\sqrt{2}}{2}\right)=\sqrt{2}\) ; \(f\left(-\frac{1}{4}\right)=-\frac{9}{4}\)
\(\Rightarrow-\frac{9}{4}\le f\left(t\right)< \sqrt{2}\Rightarrow-\frac{9}{4}\le-m< \sqrt{2}\)
\(\Rightarrow-\sqrt{2}< m\le\frac{9}{4}\)
7.
Đặt \(\left|sinx+cosx\right|=\left|\sqrt{2}sin\left(x+\frac{\pi}{4}\right)\right|=t\Rightarrow0\le t\le\sqrt{2}\)
Ta có: \(t^2=1+2sinx.cosx\Rightarrow sinx.cosx=\frac{t^2-1}{2}\) (1)
Pt trở thành:
\(\frac{t^2-1}{2}+t=1\)
\(\Leftrightarrow t^2+2t-3=0\)
\(\Rightarrow\left[{}\begin{matrix}t=1\\t=-3\left(l\right)\end{matrix}\right.\)
Thay vào (1) \(\Rightarrow2sinx.cosx=t^2-1=0\)
\(\Leftrightarrow sin2x=0\Rightarrow x=\frac{k\pi}{2}\)
\(\Rightarrow x=\left\{\frac{\pi}{2};\pi;\frac{3\pi}{2}\right\}\Rightarrow\sum x=3\pi\)
6.
\(\Leftrightarrow\left(1-sin2x\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sin^2x+cos^2x-2sinx.cosx\right)+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)^2+sinx-cosx=0\)
\(\Leftrightarrow\left(sinx-cosx\right)\left(sinx-cosx+1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx-cosx=0\\sinx-cosx=-1\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}sin\left(x-\frac{\pi}{4}\right)=0\\sin\left(x-\frac{\pi}{4}\right)=-\frac{\sqrt{2}}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x-\frac{\pi}{4}=k\pi\\x-\frac{\pi}{4}=-\frac{\pi}{4}+k\pi\\x-\frac{\pi}{4}=\frac{5\pi}{4}+k\pi\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{4}+k\pi\\x=k\pi\\x=\frac{3\pi}{2}+k\pi\end{matrix}\right.\)
Pt có 3 nghiệm trên đoạn đã cho: \(x=\left\{\frac{\pi}{4};0;\frac{\pi}{2}\right\}\)
6.
\(\Leftrightarrow\frac{1}{2}cos6x+\frac{1}{2}cos4x=\frac{1}{2}cos6x+\frac{1}{2}cos2x+\frac{3}{2}+\frac{3}{2}cos2x+1\)
\(\Leftrightarrow cos4x=4cos2x+5\)
\(\Leftrightarrow2cos^22x-1=4cos2x+5\)
\(\Leftrightarrow cos^22x-2cos2x-3=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=-1\\cos2x=3>1\left(ktm\right)\end{matrix}\right.\)
\(\Leftrightarrow...\)
7.
Thay lần lượt 4 đáp án ta thấy chỉ có đáp án C thỏa mãn
8.
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=\frac{1}{2}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=\frac{\pi}{6}+k2\pi\\x=\frac{5\pi}{6}+k2\pi\end{matrix}\right.\)
\(\Rightarrow x=\left\{\frac{\pi}{6};\frac{\pi}{2}\right\}\)
9.
Đặt \(sinx+cosx=t\Rightarrow\left\{{}\begin{matrix}-1\le t\le1\\sinx.cosx=\frac{t^2-1}{2}\end{matrix}\right.\)
\(\Rightarrow mt+\frac{t^2-1}{2}+1=0\)
\(\Leftrightarrow t^2+2mt+1=0\)
Pt đã cho có đúng 1 nghiệm thuộc \(\left[-1;1\right]\) khi và chỉ khi: \(\left[{}\begin{matrix}m\ge1\\m\le-1\end{matrix}\right.\)
10.
\(\frac{\sqrt{3}}{2}cos5x-\frac{1}{2}sin5x=cos3x\)
\(\Leftrightarrow cos\left(5x-\frac{\pi}{6}\right)=cos3x\)
\(\Leftrightarrow\left[{}\begin{matrix}5x-\frac{\pi}{6}=3x+k2\pi\\5x-\frac{\pi}{6}=-3x+k2\pi\end{matrix}\right.\)
Do \(-1\le cosx\le1\) nên pt có nghiệm khi và chỉ khi:
\(-1\le\frac{2m-3}{4-m}\le1\Leftrightarrow\left\{{}\begin{matrix}\frac{2m-3}{4-m}+1\ge0\\\frac{2m-3}{4-m}-1\le0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}\frac{m+1}{4-m}\ge0\\\frac{3m-7}{4-m}\le0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-1\le m< 4\\\left[{}\begin{matrix}m>4\\m\le\frac{7}{3}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow-1\le m\le\frac{7}{3}\)
\(x^4-8x^3+22x^2-24x+7+2m=0\)
\(\Leftrightarrow\left(x^2-4x\right)^2+6\left(x^2-4x\right)+7+2m=0\)
\(đặt:x^2-4x=t\Rightarrow t^2+6t+7+2m=0\)
\(\Delta=8-8m>0\Leftrightarrow m< 1\Rightarrow\left[{}\begin{matrix}t1=\dfrac{-6+\sqrt{8-8m}}{2}=\sqrt{2-2m}-3\\t2=\dfrac{-6-\sqrt{8-8m}}{2}=-\sqrt{2-2m}-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x^2-4x-\sqrt{2-2m}+3=0\left(1\right)\\x^2-4x+\sqrt{2-2m}+3=0\left(2\right)\end{matrix}\right.\)
\(\Rightarrow\left(1\right)\left(2\right)có-2-ngo-pb-và-không-có-nghiệm-chung\)
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta'1>0\Leftrightarrow1+\sqrt{2-2m}>0\\\Delta'2>0\Leftrightarrow1-\sqrt{2-2m}>0\end{matrix}\right.\)\(\Leftrightarrow\dfrac{1}{2}< m\le1\left(m< 1\right)\Rightarrow\dfrac{1}{2}< m< 1\left(3\right)\)
\(giả-sử-có-ngo-chung\Rightarrow\left(1\right)-\left(2\right)=0\)
\(\Rightarrow-2\sqrt{2-2m}=0\Leftrightarrow m=1\Rightarrow m\ne1\left(4\right)\)
\(\left(3\right)\left(4\right)\Rightarrow\dfrac{1}{2}< m< 1\)