Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
Làm từng cái
(1)để có hai nghiệm: \(m^2+m+1\ne0\) ta có
\(m^2+m+1=\left(m+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall m\)đúng với \(\forall m\)
(2) \(\Delta>0\Rightarrow\left(2m-3\right)^2-4\left(m-5\right)\left(m^2+m+1\right)>0\)
{để đó tý giải quyết sau }
(3) tích hai nghiệm phải dương
\(\Rightarrow x_1x_2=\dfrac{c}{a}>0\Rightarrow m-5>0\Rightarrow m>5\)
(4) tổng hai nghiệm phải dương
\(\Rightarrow-\dfrac{b}{a}>0\Rightarrow2m-3< 0\Rightarrow m< \dfrac{3}{2}\)
từ (3) (4) => không có m thỏa mãn => kết luận vô nghiệm
câu b)
có vẻ nhàn hơn
(1) \(\Delta'>0\Rightarrow9m^2-9m^2+2m-2=2m-2>0\Rightarrow m>1\)
(2)\(-\dfrac{b}{a}>0\Rightarrow m>0\)
(3) \(\dfrac{c}{a}>0\Rightarrow9m^2-2m+2>0\) đúng vơi mọi m
(1)(2)(3) nghiệm là: m>1
Theo định lí Vi-ét: \(\hept{\begin{cases}x_1+x_2=\frac{2m+2}{3}\\x_1x_2=\frac{3m-5}{3}\end{cases}}\)
Ko mất tính tổng quát, giả sử \(x_1=3x_2\)
Có: \(\hept{\begin{cases}x_1=3x_2\\x_1+x_2=\frac{2m+2}{3}\end{cases}\Rightarrow}\hept{\begin{cases}x_1=\frac{m+1}{2}\\x_2=\frac{m+1}{6}\end{cases}}\)
Mà \(x_1x_2=\frac{3m-5}{3}\Rightarrow\frac{m+1}{2}.\frac{m+1}{6}=\frac{3m-5}{3}\)
\(\Leftrightarrow4\left(m+1\right)^2=3m-5\Leftrightarrow4m^2+5m+9=0\)(vô nghiệm)
Vậy ko tồn tại m thỏa mãn
câu 1) a) thay \(m=1\) vào phương trình ta có phương trình tương đương
\(x^2-2x+m-5=0\Leftrightarrow x^2-2x+1-5=0\Leftrightarrow x^2-2x-4=0\)
\(\Delta'=\left(-1\right)^2-\left(-4\right)=1+4=5>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=1+\sqrt{5}\) ; \(x_2=1-\sqrt{5}\)
b) \(\Delta'=\left(-1\right)^2-\left(m-5\right)=1-m+5=6-m\)
ta có phương trình có 2 nghiệm phân biệt
\(\Leftrightarrow\Delta'>0\Leftrightarrow6-m>0\Leftrightarrow m< 6\)
vậy \(m< 6\) thì phương trình có 2 nghiệm phân biệt
2) a) thay \(m=1\) vào phương trình ta có phương trình tương đương
\(x^2-\left(2m+1\right)x+m^2-2=x^2-\left(2.1+1\right)x+1^2-2\)
\(=x^2-3x-1=0\)
\(\Delta=\left(-3\right)^2-4.1.\left(-1\right)=9+4=13>0\)
\(\Rightarrow\) phương trình có 2 nghiệm phân biệt
\(x_1=\dfrac{3+\sqrt{13}}{2}\) ; \(x_2=\dfrac{3-\sqrt{13}}{2}\)
b) \(\Delta=\left(2m+1\right)^2-4.1.\left(m^2-2\right)=4m^2+4m+1-4m^2+8\)
\(\Delta=9+4m\)
ta có phương trình có 2 nghiệm phân biệt
\(\Leftrightarrow9+4m>0\Leftrightarrow4m>-9\Leftrightarrow m>\dfrac{-9}{4}\)
vậy \(m>\dfrac{-9}{4}\) thì phương trình có 2 nghiệm phân biệt