K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 6 2019

Chọn A

4 tháng 10 2021

\(sinx=m^2-5m+1\Leftrightarrow sinx=\left(m-1\right)^2\)  (1)

Pt có nghiệm: \(\Rightarrow-1\le sinx\le1\)

                       \(\Rightarrow\) \(0\le\left(m-1\right)^2\le1\)

                       \(\Rightarrow\)\(0\le m-1\le1\Rightarrow-1\le m\le0\) 

Với \(m\in\left[-1;0\right]\) thì (1) có nghiệm.

Để pt (1) không có nghiệm \(\Rightarrow m\in\left(-\infty;-1\right)\cup\left(0;+\infty\right)\)

NV
27 tháng 10 2020

1.

Theo điều kiện có nghiệm của pt lượng giác bậc nhất:

\(\left(m+1\right)^2+\left(-3\right)^2\ge m^2\)

\(\Leftrightarrow...\)

2.

\(\Leftrightarrow3\left(\frac{1}{2}-\frac{1}{2}cos2x\right)+4m.sin2x-4=0\)

\(\Leftrightarrow8m.sin2x-3cos2x=5\)

Pt vô nghiệm khi: \(\left(8m\right)^2+\left(-3\right)^2< 5^2\)

\(\Leftrightarrow...\)

29 tháng 8 2021

1.

Phương trình có nghiệm khi \(1+m\in\left[-1;1\right]\Rightarrow m\in\left[-2;0\right]\).

2.

Phương trình có nghiệm khi \(5+m^2\ge\left(m+1\right)^2\)

\(\Leftrightarrow5+m^2\ge m^2+2m+1\)

\(\Leftrightarrow2m\le4\)

\(\Leftrightarrow m\le2\)

1 tháng 9 2017

a. vs m + 2

=>pttt : cos3x.cosx-sin2x+sin3xsinx+1=0

<=>\(\dfrac{1}{2}\left(cos2x+cos4x+cos2x-cos4x\right)-sin2x+1\)=0

<=>\(\dfrac{1}{2}\).2cos2x-sin2x+1=0

<=>cos2x-sin2x+1=0

<=>cos2x-sin2x-2sinxcosx+1=0

<=>cos2x+cos2x-sin2x=0

<=>2cos2x-2sinxcosx=0

<=>2cosx(cosx-sinx)=0

<=>\(\left[{}\begin{matrix}2cosx=0\\cosx-sinx=0\end{matrix}\right.\)

<=>\(\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{\pi}{4+k\pi}\end{matrix}\right.\)(k thuộc Z)

NV
8 tháng 9 2020

Đặt \(sinx+cosx=\sqrt{2}sin\left(x+\frac{\pi}{4}\right)=t\) \(\Rightarrow2sinx.cosx=t^2-1\)

Do \(x\in\left[0;\frac{\pi}{2}\right]\Rightarrow x+\frac{\pi}{4}\in\left[\frac{\pi}{4};\frac{3\pi}{4}\right]\) \(\Rightarrow\frac{\sqrt{2}}{2}\le sin\left(x+\frac{\pi}{4}\right)\le1\)

\(\Rightarrow1\le t\le\sqrt{2}\)

Pt trở thành: \(m\left(t+1\right)=t^2\Leftrightarrow m=\frac{t^2}{t+1}\)

Xét \(f\left(t\right)=\frac{t^2}{t+1}\) trên \(\left[1;\sqrt{2}\right]\)

\(f\left(t\right)-\frac{1}{2}=\frac{t^2}{t+1}-\frac{1}{2}=\frac{\left(t-1\right)\left(2t+1\right)}{2\left(t+1\right)}\ge0\Rightarrow f\left(t\right)\ge\frac{1}{2}\)

\(f\left(t\right)-2\sqrt{2}+2=\frac{t^2}{t+1}-2\sqrt{2}+2=\frac{\left(t-\sqrt{2}\right)\left(t+2-\sqrt{2}\right)}{t+1}\le0\Rightarrow f\left(t\right)\le2\sqrt{2}-2\)

\(\Rightarrow\frac{1}{2}\le m\le2\sqrt{2}-2\)