K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 1 2022

\(x^3-\left(m+5\right)x^2+\left(6x+2\right)x-8m+8=0\)

\(\Leftrightarrow\) \(\left(x-4\right)\left(x-2\right)\left(1+x-m\right)=0\)

\(\Leftrightarrow\) \(\left[{}\begin{matrix}x=4\\x=2\\x=m-1\end{matrix}\right.\)

Để pt trên có 3 nghiệm phân biệt lớn hơn 1 \(\Rightarrow\) \(\left\{{}\begin{matrix}m-1>1\\m-1\ne4\\m-1\ne2\end{matrix}\right.\) 

\(\Leftrightarrow\) \(\left\{{}\begin{matrix}m>2\\m\ne5\\m\ne3\end{matrix}\right.\) 

Vậy \(m\in\left(2;+\infty\right)\backslash\left\{3;5\right\}\) thì pt trên có 3 nghiệm phân biệt lớn hơn 1

Chúc bn học tốt!

NV
11 tháng 9 2021

\(x^3-x^2+2mx-2m=0\)

\(\Leftrightarrow x^2\left(x-1\right)+2m\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x^2+2m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x^2=-2m\end{matrix}\right.\)

Để pt có 3 nghiệm \(\Rightarrow-2m>0\Rightarrow m< 0\)

a. Do vai trò 3 nghiệm như nhau, ko mất tính tổng quát giả sử \(x_1=1\) và \(x_2;x_3\) là nghiệm của \(x^2+2m=0\) 

Để pt có 3 nghiệm pb \(\Rightarrow\left\{{}\begin{matrix}-2m>0\\-2m\ne1\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m< 0\\m\ne-\dfrac{1}{2}\end{matrix}\right.\)

Khi đó: \(x_2+x_3=0\Rightarrow x_1+x_2+x_3=1\ne10\) với mọi m

\(\Rightarrow\) Không tồn tại m thỏa mãn yêu cầu

b.

Giả sử pt có 3 nghiệm, khi đó \(\left[{}\begin{matrix}x_2=-\sqrt{-2m}< 0< 1\\x_3=\sqrt{-2m}\end{matrix}\right.\)

\(\Rightarrow\) Luôn có 1 nghiệm của pt âm \(\Rightarrow\) không tồn tại m thỏa mãn

Em coi lại đề bài

NV
21 tháng 3 2022

\(\Delta'=\left(m+3\right)^2-\left(4m+12\right)=m^2+2m-3>0\Rightarrow\left[{}\begin{matrix}m>1\\m< -3\end{matrix}\right.\)

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+3\right)\\x_1x_2=4m+12\end{matrix}\right.\)

Pt có 2 nghiệm lớn hơn -1 khi: \(-1< x_1< x_2\Leftrightarrow\left\{{}\begin{matrix}\left(x_1+1\right)\left(x_2+1\right)>0\\\dfrac{x_1+x_2}{2}>-1\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x_1x_2+x_1+x_2+1>0\\x_1+x_2>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4m+12-2\left(m+3\right)+1>0\\-2\left(m+3\right)>-2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m>-\dfrac{7}{2}\\m< -2\end{matrix}\right.\) \(\Rightarrow-\dfrac{7}{2}< m< -2\)

Kết hợp điều kiện ban đầu \(\Rightarrow-\dfrac{7}{2}< m< -3\)

16 tháng 2 2021

a, Ta có : \(mx^3-x^2+2x-8m=0\)

\(\Leftrightarrow m\left(x^3-8\right)-\left(x^2-2x\right)=0\)

\(\Leftrightarrow m\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(mx^2+2mx+4m-x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(mx^2+x\left(2m-1\right)+4m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\mx^2+x\left(2m-1\right)+4m=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\mx^2+x\left(2m-1\right)+4m=0\left(I\right)\end{matrix}\right.\)

- Để phương trình ban đầu có 3 nghiệm phân biệt lớn hơn 1

<=> Phương trình ( I ) có 2 nghiệm phân biệt lớn hơn 1 .

- Xét phương trình ( I ) có : \(\Delta=b^2-4ac=\left(2m-1\right)^2-4m.4m\)

\(=4m^2-4m+1-16m^2=-12m^2-4m+1\)

- Để phương trình ( I ) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow-\dfrac{1}{2}< m< \dfrac{1}{6}\) ( * )

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{m}\\x_1x_2=4\end{matrix}\right.\)

- Để phương trình ( I ) có nghiệm lớn hơn 1 \(\Leftrightarrow\left\{{}\begin{matrix}x_1-1+x_2-1>0\\\left(x_1-1\right)\left(x_2-1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\5-\dfrac{1-2m}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\\dfrac{7m-1}{m}>0\end{matrix}\right.\)

- Lập bảng xét dấu ( đoạn này làm tắt tí nha :vv )

Từ bảng xét dấu ta được : \(\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>\dfrac{1}{7}\end{matrix}\right.\\0< m< \dfrac{1}{4}\end{matrix}\right.\)

- Kết hợp điều kiện ( * ) ta được :\(\dfrac{1}{7}< m< \dfrac{1}{6}\)

Vậy ...

 

 

 

 

16 tháng 2 2021

b, - Xét phương trình trên có : \(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)\)

\(=m^2-4m+4-m^2+m+3m-3=1>0\)

Nên phương trình có 2 nghiệm phân biệt .

Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\)

- Để \(x_1+x_2+x_1x_2< 1\)

\(\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)-\left(m-1\right)}{m-1}< 0\)

\(\Leftrightarrow\dfrac{2m-6}{m-1}< 0\)

- Đặt \(\dfrac{2m-6}{m-1}=f\left(m\right)\)

Cho f(m) = 0 => m = 3

m-1 = 0 => m = 1

- Lập bảng xét dầu :

m.............................1..........................................3...................................

2m-6............-..........|......................-.....................0...................+.................

m-1..............-............0...................+.....................|....................+.................

f(m).............+...........||..................-........................0................+....................

- Từ bảng xét dầu ta được : Để \(f\left(m\right)< 0\)

\(\Leftrightarrow1< m< 3\)

Vậy ...

 

21 tháng 3 2022

;-;!!!