K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 2 2021

a, Ta có : \(mx^3-x^2+2x-8m=0\)

\(\Leftrightarrow m\left(x^3-8\right)-\left(x^2-2x\right)=0\)

\(\Leftrightarrow m\left(x-2\right)\left(x^2+2x+4\right)-x\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(mx^2+2mx+4m-x\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(mx^2+x\left(2m-1\right)+4m\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-2=0\\mx^2+x\left(2m-1\right)+4m=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(TM\right)\\mx^2+x\left(2m-1\right)+4m=0\left(I\right)\end{matrix}\right.\)

- Để phương trình ban đầu có 3 nghiệm phân biệt lớn hơn 1

<=> Phương trình ( I ) có 2 nghiệm phân biệt lớn hơn 1 .

- Xét phương trình ( I ) có : \(\Delta=b^2-4ac=\left(2m-1\right)^2-4m.4m\)

\(=4m^2-4m+1-16m^2=-12m^2-4m+1\)

- Để phương trình ( I ) có 2 nghiệm phân biệt \(\Leftrightarrow\Delta>0\)

\(\Leftrightarrow-\dfrac{1}{2}< m< \dfrac{1}{6}\) ( * )

- Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{1-2m}{m}\\x_1x_2=4\end{matrix}\right.\)

- Để phương trình ( I ) có nghiệm lớn hơn 1 \(\Leftrightarrow\left\{{}\begin{matrix}x_1-1+x_2-1>0\\\left(x_1-1\right)\left(x_2-1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\5-\dfrac{1-2m}{m}>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{1-4m}{m}>0\\\dfrac{7m-1}{m}>0\end{matrix}\right.\)

- Lập bảng xét dấu ( đoạn này làm tắt tí nha :vv )

Từ bảng xét dấu ta được : \(\left\{{}\begin{matrix}\left[{}\begin{matrix}m< 0\\m>\dfrac{1}{7}\end{matrix}\right.\\0< m< \dfrac{1}{4}\end{matrix}\right.\)

- Kết hợp điều kiện ( * ) ta được :\(\dfrac{1}{7}< m< \dfrac{1}{6}\)

Vậy ...

 

 

 

 

16 tháng 2 2021

b, - Xét phương trình trên có : \(\Delta^,=b^{,2}-ac=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)\)

\(=m^2-4m+4-m^2+m+3m-3=1>0\)

Nên phương trình có 2 nghiệm phân biệt .

Theo vi ét : \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-2\right)}{m-1}\\x_1x_2=\dfrac{m-3}{m-1}\end{matrix}\right.\)

- Để \(x_1+x_2+x_1x_2< 1\)

\(\Leftrightarrow\dfrac{2\left(m-2\right)+\left(m-3\right)-\left(m-1\right)}{m-1}< 0\)

\(\Leftrightarrow\dfrac{2m-6}{m-1}< 0\)

- Đặt \(\dfrac{2m-6}{m-1}=f\left(m\right)\)

Cho f(m) = 0 => m = 3

m-1 = 0 => m = 1

- Lập bảng xét dầu :

m.............................1..........................................3...................................

2m-6............-..........|......................-.....................0...................+.................

m-1..............-............0...................+.....................|....................+.................

f(m).............+...........||..................-........................0................+....................

- Từ bảng xét dầu ta được : Để \(f\left(m\right)< 0\)

\(\Leftrightarrow1< m< 3\)

Vậy ...

 

NV
5 tháng 11 2019

\(m\ne-4\)

\(\Delta=\left(2m+7\right)^2-4\left(m+4\right)\left(m+1\right)=8m+33\ge0\Rightarrow m\ge\frac{33}{8}\)

Theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{-2m-7}{m+4}\\x_1x_2=\frac{m+1}{m+4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3x_1+x_2=1\\x_1+x_2=\frac{-2m-7}{m+4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3x_1+x_2=1\\2x_1=1+\frac{2m+7}{m+4}=\frac{3m+11}{m+4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x_1=\frac{3m+11}{2m+8}\\x_2=1-3x_1=\frac{-7m-24}{2m+8}\end{matrix}\right.\)

Thay vào ta được:

\(\left(\frac{3m+11}{2m+8}\right)\left(\frac{-7m-24}{2m+8}\right)=\frac{m+1}{m+4}\)

Bạn tự giải ra m

7 tháng 11 2019

tks nhé
p.s: cái đk đầu tiên phải là \(\ge-\frac{33}{8}\) chứ nhỉ hehe

NV
12 tháng 5 2019

Từ pt trên suy ra \(y=x+1\) thay xuông dưới:

\(\left(m-1\right)x^2+\left(x+1\right)^2+x-2\left(x+1\right)+2m-3=0\)

\(\Leftrightarrow mx^2+x+2m-4=0\)

Đặt \(f\left(x\right)=mx^2+x+2m-4=0\)

Để phương trình có 2 nghiệm thỏa mãn \(x_1< x_2< 2\)

\(\Leftrightarrow\left\{{}\begin{matrix}\Delta=1-4m\left(2m-4\right)>0\\a.f\left(2\right)=m\left(4m+2+2m-4\right)>0\\\frac{x_1+x_2}{2}=\frac{-1}{2m}< 2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}-8m^2+16m+1>0\\m\left(6m-2\right)>0\\\frac{4m+1}{2m}>0\end{matrix}\right.\) \(\Leftrightarrow\frac{1}{3}< m< \frac{4+3\sqrt{2}}{4}\)

NV
18 tháng 10 2020

Bạn tham khảo:

Câu hỏi của Lê Ngọc Cương - Toán lớp 9 | Học trực tuyến

NV
27 tháng 10 2019

\(\Delta'=\left(m-1\right)^2-m^2+3m=m+1\ge0\Rightarrow m\ge-1\)

Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x_1^2+x_2^2=8\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2-8=0\)

\(\Leftrightarrow4\left(m-1\right)^2-2\left(m^2-3m\right)-8=0\)

\(\Leftrightarrow2m^2-2m-4=0\Rightarrow\left[{}\begin{matrix}m=-1\\m=2\end{matrix}\right.\)

NV
21 tháng 8 2020

Để pt có 2 nghiệm

\(\Leftrightarrow\left\{{}\begin{matrix}m-1\ne0\\\Delta'=\left(m+1\right)^2-m\left(m-1\right)\ge0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\3m+1\ge0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ge-\frac{1}{3}\end{matrix}\right.\)

Khi đó theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m+1\right)}{m-1}\\x_1x_2=\frac{m}{m-1}\end{matrix}\right.\)

\(\left|x_1-x_2\right|\ge2\Leftrightarrow\left(x_1-x_2\right)^2\ge4\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-4x_1x_2\ge4\)

\(\Leftrightarrow4\left(\frac{m+1}{m-1}\right)^2-\frac{4m}{m-1}\ge4\)

\(\Leftrightarrow\left(1+\frac{2}{m-1}\right)^2-\left(1+\frac{1}{m-1}\right)-1\ge0\)

Đặt \(\frac{1}{m-1}=t\)

\(\Rightarrow\left(2t+1\right)^2-\left(t+1\right)-1\ge0\)

\(\Leftrightarrow4t^2+3t-1\ge0\Rightarrow\left[{}\begin{matrix}t\ge\frac{1}{4}\\t\le-1\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\frac{1}{m-1}\ge\frac{1}{4}\\\frac{1}{m-1}\le-1\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\frac{5-m}{m-1}\ge0\\\frac{m}{m-1}\le0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}1< m\le5\\0\le m< 1\end{matrix}\right.\)

\(\Rightarrow m_{max}=5\)

21 tháng 11 2022

Câu 2:

\(\Delta=\left(-4\right)^2-4\left(m+1\right)=16-4m-4=-4m+12\)

Để phương trình có hai nghiệm thì -4m+12>=0

=>m<=3

Để pt có 2 nghiệm cùng dấu thì x1*x2>0

=>m+1>0

=>m>-1

15 tháng 2 2020

m=1 loại

m khác 1:

\(\Delta'=\left(m-2\right)^2-\left(m-1\right)\left(m-3\right)=1>0\)

Theo hệ thức viét ta có:

\(\left\{{}\begin{matrix}x_1+x_2=\frac{2\left(m-2\right)}{m-1}\\x_1.x_2=\frac{m-3}{m-1}\end{matrix}\right.\)

x1+x2+x1.x2-1=\(\frac{2m-6}{m-1}< 0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>3\\m< 1\end{matrix}\right.\)

Vậy m>3 hoặc m<1 thỏa mãn