K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 2 2021

  mx = 2 - x<=> mx + x = 2<=> x(m+1) = 2Để pt vô nghiệm thì m + 1 = 0 <=> m =-1 Vậy m = -1 thì pt mx = 2 - x vô nghiệm 

25 tháng 2 2021

Ta có: mx=2-x

<=> mx+x=2

<=> x(m+1)=2

Muốn pt trên vô nghiệm thì: 0x=2 khi m+1=0 <=> m=-1

Vậy khi m=-1 thì pt trên vô nghiệm

18 tháng 3 2022

à bài này a nhớ (hay mất điểm ở bài này) ;v

gòi a làm hộ e hong đây .-.

Mai nộp gòi mà chưa lmj :<

DD
25 tháng 2 2021

a) \(mx=2-x\Leftrightarrow\left(m+1\right)x=2\).

Với \(m+1=0\Leftrightarrow m=-1\)phương trình tương đương: 

\(0x=2\)(vô nghiệm: 

Với \(m+1\ne0\Leftrightarrow m\ne-1\)phương trình tương đương: 

\(x=\frac{2}{m+1}\)

Vậy với \(m=-1\)phương trình đã cho vô nghiệm, với \(m\ne-1\)phương trình đã cho có nghiệm duy nhất \(x=\frac{2}{m+1}\).

b) Bạn làm tương tự câu a). 

20 tháng 2 2021

\(2\left(x+1\right)-1=3-\left(1-2x\right)\)

\(\Leftrightarrow2x+2-1=3-1+2x\)

\(\Leftrightarrow2x-2x=3-1-2+1\)

\(\Leftrightarrow0x=1\left(\exists x\inℝ\right)\)

Vậy tập nghiệm pt: \(S=\varnothing\)

* Ta có: \(mx=2-x\Leftrightarrow mx+x=2\Leftrightarrow\left(m+1\right)x=2\)

Pt vô nghiệm <=>  m+1=0 <=> m=-1

20 tháng 2 2021

* giải phương trình:

   2(x+1)-1=3-(1-2x)

     2x+2-1=3-1+2x

       2x+1=2+2x

 -> Phương trình này vô ngiệm

* Tìm m để phương trình sau vô nghiệm

           Ta có \(mx=2-x\)

                    \(\Leftrightarrow\left(m+1\right)x=2\)

                    \(\Leftrightarrow x=\frac{2}{m+1}\)

     Để \(\frac{2}{m+1}\)vô nghiệm thì m+1 phải bằng 0

   => m=0-1=-1

   => Để phương trình đó vô nghiệm thì m=-1

7 tháng 3 2017

m(mx+1)= 3(mx+1)

<=>m^2x+m=3mx+3

<=>m^2 - 3mx +m -3 = 0

co  Δ = b^2 - 4ac 

        =\(\left(-3m\right)^2\) - 4 . ( m - 3) . (m^2)

        = \(9m^2\) -  \(12m^3\) + \(12m^2\)

        = \(21m^2\) - \(12m^3\)

        de pt vo nghiem thi  Δ = 0

                                     <=>\(21m^2\) - \(12m^3\) = 0

                                     <=>\(7m^2\)  - \(4m^3\)     =0

                                     <=>7m . ( m - \(\frac{4}{7}\) )      = 0

                                     <=>\(\hept{\begin{cases}7m=0=>m=0\\m-\frac{4}{7}=0=>m=\frac{4}{7}\end{cases}}\)

vay voi m = { 0 , \(\frac{4}{7}\)} thi pt tren vo nghiem

4 tháng 1 2020

a) 2x-mx+2m-1=0

\(\Leftrightarrow x\left(2-m\right)=1-2m\left(1\right)\)

*Nếu \(m=2\)thay vào (1) ta được:

\(x\left(2-2\right)=1-2\cdot2\Leftrightarrow0x=-3\)

Với \(m=\frac{1}{2}\) ,pt trên vô nghiệm.

*Nếu \(m\ne2\)thì phương trình (1) có nghiệm  \(x=\frac{1-2m}{2-m}\)

Vậy  \(m\ne2\)thì phương trình có nghiệm duy nhất \(x=\frac{1-2m}{2-m}\)

b)c) mình biến đổi thôi, phần lập luận bạn tự lập luận nhé 

b)\(mx+4=2x+m^2\Leftrightarrow mx-2x=m^2-4\Leftrightarrow x\left(m-2\right)=\left(m-2\right)\left(m+2\right)\)

*Nếu \(m\ne2\).....pt có ngiệm x=m+2

*Nếu \(m=2\)....pt có vô số nghiệm

Vậy ....

c)\(\left(m^2-4\right)x+m-2=0\Leftrightarrow\left(m-2\right)\left(m+2\right)x=-\left(m-2\right)\)

Nếu \(m=2\).... pt có vô số nghiệm

Nếu \(m=-2\)..... pt vô nghiệm

Nếu \(m\ne\pm2\).... pt có nghiệm \(x=-m-2\)

Để nghiệm  \(x=-m-2\)dương \(\Leftrightarrow m+2< 0\Leftrightarrow m< -2\ne\pm2\)

Vậy m<-2