Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{m}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Xét \(\dfrac{m}{3}=\dfrac{-2}{2}\Leftrightarrow m=-3\) .
Dễ thấy \(m=-3\) thỏa mãn: \(\dfrac{-3}{3}=\dfrac{-2}{2}\ne\dfrac{2}{9}\)
Vậy \(m=-3\) hệ vô nghiệm.
b) Hệ phương trình vô nghiệm khi và chỉ khi:\(\dfrac{2}{1}=\dfrac{-m}{1}\ne\dfrac{5}{7}\)
Xét: \(\dfrac{2}{1}=\dfrac{-m}{1}\Leftrightarrow m=-2\)
Do \(\dfrac{2}{1}=\dfrac{-\left(-2\right)}{1}\ne\dfrac{5}{7}\) thỏa mãn nên m = - 2 hệ phương trình vô nghiệm.

- Nếu \(m=0\Rightarrow\left\{{}\begin{matrix}y=-2\\x=3\end{matrix}\right.\) \(\Rightarrow x+y=1\) (ko thỏa)
- Nếu \(m\ne0\): \(\left\{{}\begin{matrix}mx-y=2\\x+my=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m^2x-my=2m\\x+my=3\end{matrix}\right.\)
\(\Rightarrow\left(m^2+1\right)x=2m+3\Rightarrow x=\dfrac{2m+3}{m^2+1}\)
\(\Rightarrow y=mx-2=\dfrac{m\left(2m+3\right)}{m^2+1}-2=\dfrac{3m-2}{m^2+1}\)
\(\Rightarrow x+y=0\Leftrightarrow\dfrac{2m+3}{m^2+1}+\dfrac{3m-2}{m^2+1}=0\)
\(\Leftrightarrow\dfrac{5m+1}{m^2+1}=0\Leftrightarrow5m+1=0\Rightarrow m=\dfrac{-1}{5}\)

Hệ có nghiệm duy nhất khi \(\dfrac{a}{a'}\ne\dfrac{b}{b'}\) \(\Rightarrow\)\(m\ne\dfrac{1}{m}\left(m\ne0\right)\)
\(\Leftrightarrow m^2\ne1\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\m\ne-1\end{matrix}\right.\)
vậy hệ phương trình có nghiệm duy nhất khi \(m\ne\left\{{}\begin{matrix}-1\\0\\1\end{matrix}\right.\)
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
y=m-mx\\
x+my=m^2\end{matrix}\right.\)
\(\Rightarrow x+m(m-mx)=m^2\)
\(\Leftrightarrow x-m^2x=0\Leftrightarrow x(1-m^2)=0 (*)\)
Để HPT có nghiệm duy nhất thì PT $(*)$ cũng phải có nghiệm duy nhất.
Điều này xảy ra khi \(1-m^2\neq 0\Rightarrow m\neq \pm 1\)