Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Với điều kiện \(\left(m-2\cos x\right)\left(m-2\sin x\right)\ne0\) (*) phương trình đã cho tương đương với
\(\left(m\sin x-2\right)\left(m-2\sin x\right)=\left(m\cos x-2\right)=\left(m-2\cos x\right)\)
\(\Leftrightarrow m^2\sin x-2m-2m\sin^2x+4\sin x=m^2\cos x-2m-2m\cos^2x+4\cos x\)
\(\Leftrightarrow2m\left(\cos^2x-\sin^2x\right)-m^2\left(\cos x-\sin x\right)-4\left(\cos x-\sin x\right)=0\)
\(\Leftrightarrow\left(\cos x-\sin x\right)\left(2m\left(\cos x+\sin x\right)-m^2-4\right)=0\) (1)
a) Nếu \(m=0\) thì (1) \(\Leftrightarrow\cos x-\sin x=0\)\(\Leftrightarrow\tan x=1\Leftrightarrow x=\dfrac{\pi}{4}+k\pi\). Nghiệm này sẽ không thỏa mãn điều kiện (*) khi và chỉ khi \(\left(m-2\cos\left(\dfrac{\pi}{4}+k\pi\right)\right)\left(m-2\sin\left(\dfrac{\pi}{4}+k\pi\right)\right)=0\)
\(\Leftrightarrow\left(0-\left(-1\right)^k\sqrt{2}\right)\left(0-\left(-1\right)^k\sqrt{2}=0\right)\)
\(\Leftrightarrow\left(-1\right)^k\sqrt{2}=0\) , vô lí.
Vậy khi \(m=0\), phương trình đã cho có nghiệm là \(x=\dfrac{\pi}{4}+k\pi\)
b) Nếu \(m\ne0\) thì (1) tương đương với tập hợp hai phương trình:
\(\tan x=1\) (2) và \(\sqrt{2}\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{m^2+4}{2m}\)\(\Leftrightarrow\cos\left(x-\dfrac{\pi}{4}\right)=\dfrac{m^2+4}{2m\sqrt{2}}\) (3)
Trong đó phương trình (3) vô nghiệm vì \(\left|\dfrac{m^2+4}{2m\sqrt{2}}\right|=\dfrac{m^2+4}{2\sqrt{2}\left|m\right|}\ge\dfrac{2\sqrt{4m^2}}{2\sqrt{2}\left|m\right|}=\sqrt{2}>1\).
Phương trình (2) có nghiệm là \(x=\dfrac{\pi}{4}+k\pi\). Nghiệm này sẽ không thỏa mãn điều kiện (*) khi và chỉ khi
\(\left(m-2\cos\left(\dfrac{\pi}{4}+k\pi\right)\right)\left(m-2\sin\left(\dfrac{\pi}{4}+k\pi\right)\right)=0\)\(\Leftrightarrow\left(m-\left(-1\right)^k\sqrt{2}\right)\left(m-\left(-1\right)^k\sqrt{2}=0\right)\)
\(\Leftrightarrow m=\left(-1\right)^k\sqrt{2}\), trái giả thiết \(m\ne\pm\sqrt{2}\).
Tóm lại, trong mọi trường hợp phương trình đã cho có nghiệm \(x=\dfrac{\pi}{4}+k\pi\) Điều kiện \(x\in[20\pi;30\pi]\) tương đương với \(20\pi\le\dfrac{\pi}{4}+k\pi\le30\pi\)\(\Leftrightarrow20-\dfrac{1}{4}\le k\le30-\dfrac{1}{4}\)\(\Leftrightarrow k=21;22;23;...;29\). Số nghiệm của phương trình trong đoạn đang xét là 9.
1.a/ \(\left\{{}\begin{matrix}3^{x+1}>0\\5^{x^2}>0\end{matrix}\right.\) \(\forall x\) \(\Rightarrow\) pt vô nghiệm
b/ Mình làm câu b, câu c bạn tự làm tương tự, 3 câu này cùng dạng
Lấy ln hai vế:
\(ln\left(3^{x^2-2}.4^{\dfrac{2x-3}{x}}\right)=ln18\Leftrightarrow ln3^{x^2-2}+ln4^{\dfrac{2x-3}{x}}-ln18=0\)
\(\Leftrightarrow\left(x^2-2\right)ln3+\dfrac{2x-3}{x}2ln2-ln\left(2.3^2\right)=0\)
\(\Leftrightarrow x^3ln3-2x.ln3+4x.ln2-6ln2-x.ln2-2x.ln3=0\)
\(\Leftrightarrow x^3ln3-4x.ln3+3x.ln2-6ln2=0\)
\(\Leftrightarrow x.ln3\left(x^2-4\right)+3ln2\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x^2ln3+2x.ln3+3ln2\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}x-2=0\Rightarrow x=2\\x^2ln3+2x.ln3+3ln2=0\left(1\right)\end{matrix}\right.\)
Xét (1): \(\left(x^2+2x\right)ln3=-3ln2\Leftrightarrow x^2+2x=\dfrac{-3ln2}{ln3}=-3log_32\)
\(\Leftrightarrow\left(x+1\right)^2=1-3log_32=log_33-log_38=log_3\dfrac{3}{8}< 0\)
\(\Rightarrow\left(1\right)\) vô nghiệm
\(\Rightarrow\) pt có nghiệm duy nhất \(x=2\)
2/ Pt đã cho tương đương:
\(2017^{sin^2x}-2017^{cos^2x}=cos^2x-sin^2x\)
\(\Leftrightarrow2017^{sin^2x}+sin^2x=2017^{cos^2x}+cos^2x\)
Xét hàm \(f\left(t\right)=2017^t+t\) (\(0\le t\le1\))
\(\Rightarrow f'\left(t\right)=2017^t.ln2017+1>0\) \(\forall t\) \(\Rightarrow f\left(t\right)\) đồng biến
\(\Rightarrow f\left(t_1\right)=f\left(t_2\right)\Leftrightarrow t_1=t_2\)
\(\Rightarrow sin^2x=cos^2x\Rightarrow cos^2x-sin^2x=0\Rightarrow cos2x=0\)
\(\Rightarrow x=\dfrac{\pi}{4}+\dfrac{k\pi}{2}\)
Thế k=0; k=1 ta được 2 nghiệm thuộc đoạn đã cho là \(x=\dfrac{\pi}{4};x=\dfrac{3\pi}{4}\)
\(\Rightarrow\) tổng nghiệm là \(T=\dfrac{\pi}{4}+\dfrac{3\pi}{4}=\pi\)
1)
Ta có \(P_1=\int \frac{\cos xdx}{2\sin x-7}=\int \frac{d(\sin x)}{3\sin x-7}\)
Đặt \(\sin x=t\Rightarrow P_1=\int \frac{dt}{3t-7}=\frac{1}{3}\int \frac{d(3t-7)}{3t-7}=\frac{1}{3}\ln |3t-7|+c\)
\(=\frac{1}{3}\ln |3\sin x-7|+c\)
2)
\(P_2=\int \sin xe^{2\cos x+3}dx\)
Đặt \(\cos x=t\)
\(P_2=-\int e^{2\cos x+3}d(\cos x)=-\int e^{2t+3}dt\)
\(=-\frac{1}{2}\int e^{2t+3}d(2t+3)=\frac{-1}{2}e^{2t+3}+c\)
\(=\frac{-e^{2\cos x+3}}{2}+c\)
3)
\(P_3=\int \frac{\sin x+x\cos x}{(x\sin x)^2}dx\)
Để ý rằng \((x\sin x)'=x'\sin x+x(\sin x)'=\sin x+x\cos x\)
Do đó: \(d(x\sin x)=(x\sin x)'dx=(\sin x+x\cos x)dx\)
Suy ra \(P_3=\int \frac{d(x\sin x)}{(x\sin x)^2}\)
Đặt \(x\sin x=t\Rightarrow P_3=\int \frac{dt}{t^2}=\frac{-1}{t}+c=\frac{-1}{x\sin x}+c\)
Câu 1:
\(\int\frac{sinx}{sinx+cosx}dx=\frac{1}{2}\int\frac{sinx+cosx+sinx-cosx}{sinx+cosx}dx=\frac{1}{2}\int dx-\frac{1}{2}\int\frac{cosx-sinx}{sinx+cosx}dx\)
\(=\frac{1}{2}x-\frac{1}{2}\int\frac{d\left(sinx+cosx\right)}{sinx+cosx}=\frac{1}{2}x-\frac{1}{2}ln\left|sinx+cosx\right|+C\)
\(\Rightarrow\left\{{}\begin{matrix}a=\frac{1}{2}\\b=-\frac{1}{2}\end{matrix}\right.\)
\(\int cos^2xdx=\int\left(\frac{1}{2}+\frac{1}{2}cos2x\right)dx=\frac{1}{2}x+\frac{1}{4}sin2x+C\)
\(\Rightarrow\left\{{}\begin{matrix}c=\frac{1}{2}\\d=2\end{matrix}\right.\) \(\Rightarrow I=5\)
Câu 2:
\(I=\int\left(sin\left(lnx\right)-cos\left(lnx\right)\right)dx=\int sin\left(lnx\right)dx-\int cos\left(lnx\right)dx=I_1-I_2\)
Xét \(I_2=\int cos\left(lnx\right)dx\)
Đặt \(\left\{{}\begin{matrix}u=cos\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\frac{1}{x}sin\left(lnx\right)dx\\v=x\end{matrix}\right.\)
\(\Rightarrow I_2=x.cos\left(lnx\right)+\int sin\left(lnx\right)dx=x.cos\left(lnx\right)+I_1\)
\(\Rightarrow I=I_1-\left(x.cos\left(lnx\right)+I_1\right)=-x.cos\left(lnx\right)+C\)
b/ \(I=\int\limits sin\left(lnx\right)dx\)
Đặt \(\left\{{}\begin{matrix}u=sin\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=\frac{1}{x}cos\left(lnx\right)dx\\v=x\end{matrix}\right.\)
\(\Rightarrow I=x.sin\left(lnx\right)-\int cos\left(lnx\right)dx\)
Đặt \(\left\{{}\begin{matrix}u=cos\left(lnx\right)\\dv=dx\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}du=-\frac{1}{x}sin\left(lnx\right)dx\\v=x\end{matrix}\right.\)
\(\Rightarrow I=x\left[sin\left(lnx\right)-cos\left(lnx\right)\right]-I\)
\(\Rightarrow I=\frac{1}{2}x\left[sin\left(lnx\right)-cos\left(lnx\right)\right]|^{e^{\pi}}_1=\frac{1}{2}\left(e^{\pi}+1\right)\)
\(\Rightarrow a=2;b=\pi;c=1\)
Đáp án A