\(\begin{cases} x^2 + y^2 = m +1\\ x^2 + y^2 + 2x + 4y +1 = 0\e...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2016

ôi trờiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiucche

24 tháng 3 2016

Từ (2) suy ra \(\begin{cases}2-y\ge0\\x=\frac{y^2-4y+4}{y}\end{cases}\)

Lúc đó (1) có \(\frac{y^2-4y+4}{y}-y+m=0\Leftrightarrow m=\frac{4y-4}{y}\Leftrightarrow g\left(m\right)=f\left(y\right)\)

Xét hàm số \(f\left(y\right)=\frac{4y-4}{y}\)

- Miền xác định \(D=\left(-\infty;2\right)\)/\(\left\{0\right\}\)

- Đạo hàm \(f'\left(y\right)=\frac{4}{y^2}>0\) Hàm số đồng biến trên D

- Giới hạn 

                      \(\lim\limits_{y\rightarrow-\infty}f\left(y\right)=4\)

                        \(\lim\limits_{y\rightarrow0^+}f\left(y\right)=-\infty\)

                        \(\lim\limits_{y\rightarrow0^-}f\left(y\right)=+\infty\)

Bảng biến thiên 

x-\(\infty\)                                       0                                                 2
y'                      +                   //                   +
y  4                               +\(\infty\)  //  -\(\infty\)                                       2

 

24 tháng 3 2016

Vậy để hệ có nghiệm  : \(m\in\left(-\infty;2\right)\cup\left(4,+\infty\right)\)

26 tháng 2 2016

Ta có \(2x^2-\left(3m+1\right)x+m^2+m=0\) (a) 

\(\Leftrightarrow\) \(x=m:=x_1\) hoặc \(x=\frac{m+1}{2}:=x_2\)

Bởi vậy \(\begin{cases}2x^2-\left(3m+1\right)x+m^2+m=0\\x^2-mx-3m-1\ge0\end{cases}\)  (1) có hai nghiệm phân biệt khi và chỉ khi hai nghiệm \(x_1\) , \(x_2\) đó

khác nhau và cùng thỏa mãn ( b) , hay là :

\(\begin{cases}\begin{cases}m\ne\frac{m+1}{2}\\m^2-m^2-3m-1\ge0\end{cases}\\\left(\frac{m+1}{2}\right)^2-m\frac{m+1}{2}-3m-1\ge0\\\end{cases}\)

\(\Leftrightarrow\) \(\begin{cases}m\ne1\\m\le-\frac{1}{3}\\m^2+12m+3\le0\end{cases}\)

\(\left(\Rightarrow m\ne1\right)\)

\(\Leftrightarrow\) \(\begin{cases}m\le-\frac{1}{3}\\-6-\sqrt{33}\le m\le-6+\sqrt{33}\end{cases}\)

\(\Leftrightarrow-6-\sqrt{33}\le m\le-\frac{1}{3}\)

Vậy  \(-6-\sqrt{33}\le m\le-\frac{1}{3}\) là các giá trị cần tìm