K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 8 2020

\(y'=3x^2-6\left(m+1\right)x=0\Leftrightarrow\left[{}\begin{matrix}x=0\\x=2m+2\end{matrix}\right.\)

\(y\left(0\right)=-m^3-1\)

TH1 \(2m+2>0\Leftrightarrow m>-1\)

\(\Leftrightarrow y\left(0\right)=-m^3-1< 0\Rightarrow y\left(2m+2\right)< 0\)

TH1 loại

TH2: \(2m+2< 0\Leftrightarrow m< -1\)

\(\Leftrightarrow y\left(0\right)=-m^3-1>0\Rightarrow y\left(2m+2\right)>0\)

\(\Leftrightarrow m^3< -1\Leftrightarrow m< -1\)

Vậy m<-1 thì phương trình có giá trị CĐ,CT>0

31 tháng 12 2019

Chọn A

13 tháng 5 2019

Ta có:  y ' = - 3 x 2 + 2 ( 2 m - 1 ) x + m - 2 ( * )

Để hàm số đã cho có cực đại và cực tiểu khi và chỉ khi: phương trình có hai nghiệm phân biệt và y’ đổi dấu khi qua các nghiệm đó.

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn C.

4 tháng 3 2018

Đáp án D.

y = -x3 + (2m – 1)x2 – (2 – m)x – 2

TXĐ: D = R

y' = -3x2 + 2(2m – 1) – 2 + m

Đồ thị hàm số có cực đại và cực tiểu <=> Pt y’ = 0 có hai nghiệm phân biệt

<=>  Δ’ = (2m – 1)2 + 3(-2 + m) > 0 <=> 4m2 – m – 5 > 0 <=> ∈ (-∞; -1) ∪ (5/4; +∞)

25 tháng 6 2019

Đáp án B

17 tháng 8 2018

Đáp án: C.

Để có cực đại, cực tiểu, phương trình y' = 3 x 2  + 2mx = 0 phải có hai nghiệm phân biệt.

Phương trình y' = x(3x + 2m) = 0 có hai nghiệm phân biệt x1 = 0, x2 = -2m/3 khi và chỉ khi x ≠ 0.

25 tháng 6 2018

Đáp án: C.

Để có cực đại, cực tiểu, phương trình y' = 3 x 2  + 2mx = 0 phải có hai nghiệm phân biệt.

Phương trình y' = x(3x + 2m) = 0 có hai nghiệm phân biệt  x 1  = 0,  x 2  = -2m/3 khi và chỉ khi x ≠ 0.

NV
5 tháng 7 2021

\(y'=3x^2-6x=0\Rightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\)

\(\Rightarrow y_{CĐ}=y\left(0\right)=m\)

\(y_{CT}=y\left(2\right)=m-4\)

\(y_{CĐ}\) và \(y_{CT}\) trái dấu khi và chỉ khi:

\(m\left(m-4\right)< 0\Leftrightarrow0< m< 4\)

19 tháng 12 2018

a) y′ = 3 x 2  + 2(m + 3)x + m

y′ = 0 ⇔ 3 x 2  + 2(m + 3)x + m = 0

Hàm số đạt cực trị tại x = 1 thì:

y′(1) = 3 + 2(m + 3) + m = 3m + 9 = 0 ⇔ m = −3

Khi đó,

y′ = 3 x 2  – 3;

y′′ = 6x;

y′′(1) = 6 > 0;

Suy ra hàm số đạt cực tiểu tại x = 1 khi m = 3.

b) y′ = −( m 2  + 6m) x 2  − 4mx + 3

y′(−1) = − m 2  − 6m + 4m + 3 = (− m 2  − 2m – 1) + 4 = −(m + 1)2 + 4

Hàm số đạt cực trị tại x = -1 thì :

y′(−1) = − ( m + 1 ) 2  + 4 = 0 ⇔ ( m + 1 ) 2  = 4

⇔ Giải sách bài tập Toán 12 | Giải sbt Toán 12

Với m = -3 ta có y’ = 9 x 2  + 12x + 3

⇒ y′′ = 18x + 12

⇒ y′′(−1) = −18 + 12 = −6 < 0

Suy ra hàm số đạt cực đại tại x = -1.

Với m = 1 ta có:

y′ = −7 x 2  − 4x + 3

⇒ y′′ = −14x − 4

⇒ y′′(−1) = 10 > 0

Suy ra hàm số đạt cực tiểu tại x = -1

Kết luận: Hàm số đã cho đạt cực đại tại x = -1 khi m = -3.

8 tháng 1 2019

Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.

Ta có:

Xét y’ = 0, ta có: y′ = 3 x 2  − 2mx + (m – 2/3)

∆ ’ > 0 khi m < 1 hoặc m > 2 (∗)

Để hàm số có cực trị tại x = 1 thì

y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)

Với m = 7/3 thì hàm số đã cho trở thành:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và y CT  = y(1) = (16/3).

7 tháng 7 2018

Ta biết hàm số y = f(x) có cực trị khi phương trình y’ = 0 có nghiệm và y’ đổi dấu khi qua các nghiệm đó.

Ta có:

Xét y’ = 0, ta có: y′ = 3 x 2  − 2mx + (m – 2/3)

Δ’ > 0 khi m < 1 hoặc m > 2 (∗)

Để hàm số có cực trị tại x = 1 thì

y′(1) = 3 − 2m + m – 2/3 = 0 ⇔ m = 7/3, thỏa mãn điều kiện (∗)

Với m = 7/3 thì hàm số đã cho trở thành:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Ta có:

Giải sách bài tập Toán 12 | Giải sbt Toán 12

Vì y′′(1) = 6 – (14/3) > 0 nên hàm số đạt cực tiểu tại x = 1 và y C T  = y(1) = (16/3).