K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 10 2020

\(y'=x^2-2mx+m^2-1\)

Hàm có 2 cực trị khi và chỉ khi:

\(x^2-2mx+m^2-1=0\) có 2 nghiệm

\(\Leftrightarrow\Delta'=m^2-\left(m^2-1\right)>0\Leftrightarrow1>0\) (luôn thỏa mãn)

Khi đó, gọi \(x_1;x_2\) là hai cực trị, theo định lý Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m^2-1\end{matrix}\right.\)

\(x_1^2+x_2^2-x_1x_2=7\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-3x_1x_2-7=0\)

\(\Leftrightarrow4m^2-3\left(m^2-1\right)-7=0\)

\(\Leftrightarrow m^2-4=0\Rightarrow m=\pm2\)

4 tháng 8 2019

Chọn B

[Phương pháp tự luận]

y ' = 3 x 2 - 6 m x + 3 ( m 2 - 1 )

Hàm số luôn luôn có cực trị với moi m

Theo định lí Viet

x 1 + x 2 = 2 m x 1 . x 2 = m 2 - 1

x 1 2 + x 2 2 - x 1 x 2 = 7

⇔ ( 2 m ) 2 - 3 ( m 2 - 1 ) = 7

⇔ m = ± 2

29 tháng 3 2017

Chọn D

3 tháng 7 2019

Chọn A

Ta có y ' = 3 x 2 + 4 ( m - 1 ) x + m 2 - 4 m + 1 .  Hàm số có hai cực trị

=> y' = 0 có hai nghiệm phân biệt <=> Δ' > 0 <=>  4 ( m - 1 ) 2 - 3 ( m 2 - 4 m + 1 ) > 0

<=>  m 2 + 4 m + 1 > 0

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Áp dụng Vi-ét cho phương trình y’ = 0 có hai nghiệm phân biệt  x 1 , x 2  ta có 

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Đối chiếu điều kiện (*) có m = 5 hoặc m = 1

9 tháng 3 2018

Chọn D.

Ta có: 

Để hàm số có hai cực trị x1, x2 thì phương trình (1) có hai nghiệm phân biệt.

Khi đó: 

Mà theo yêu cầu bài toán x1, x2 thỏa mãn:  x 1 2 + x 2 2   =   6

Mặt khác theo Vi-et ta có: 

thay vào (2) ta được  thỏa mãn điều kiện (*).

Vậy m = -3.

8 tháng 2 2019

Phương trình hoành độ giao điểm của (C)  và đường thẳng d:

1 3 x 3 - m x 2 - x + m + 2 3 = 0 ⇔ ( x - 1 ) x 2 + ( - 3 m + 1 ) x - 3 m - 2 = 0

(C) cắt Ox  tại ba điểm phân biệt khi  phương trình (1) có hai nghiệm phân biệt khác 1

Gọi x1= 1 còn x2; x3 là nghiệm phương trình (1)  nên theo Viet ta có

Chọn A.

4 tháng 5 2018

Chọn C

Ta có: y ' = 2 x 2 - 2 m x - 2 ( 3 m 2 - 1 )

g ( x ) = x 2 - m x - 3 m 2 + 1  là tam thức bậc hai có  ∆ = 13 m 2 - 4

Do đó hàm số có hai điểm cực trị khi và chỉ khi y '  có hai nghiệm phân biệt

⇔ g ( x )  có hai nghiệm phân biệt

x 1 ; x 2 là các nghiệm của g(x) nên theo định lý Vi-ét, ta có

Đối chiếu với điều kiện (1), ta thấy chỉ m = 2 3 thỏa mãn yêu cầu bài toán

7 tháng 8 2019

Ta có:  y ' = 3 x 2 - 6 m x + 3 m 2 - 3

Để đồ thị hàm số đã cho có 2 điểm cực trị khi và chỉ khi phương trình y’ = 0 có 2 nghiệm phân biệt và y’ đổi dấu qua các nghiệm đó.

y' = 3x^2 - 6mx + 3m^2 - 3

⇔ Δ ' = 9 m 2 - 9 m 2 + 9 = 9 > 0

Do đó, hàm số đã cho có 2 điểm cực trị x 1 ,   x 2  là nghiệm phương trình y’ = 0.

Áp dụng hệ thức Vi-et ta có:

Bài tập trắc nghiệm Giải tích 12 | Câu hỏi trắc nghiệm Giải tích 12

Chọn D.

3 tháng 9 2018

Chọn A

Hàm số có 2 cực trị ⇔ y ' = 0  có hai nghiệm phân biệt  x 1 , x 2 thỏa mãn:  - 1 < x 1 < x 2

15 tháng 9 2019

+ Ta có: y' x2 + 2(m+3)x + 4(m+3) 

Yêu cầu của bài toán tường đương y’ =0 có hai nghiệm phân biệt x1; x2  thỏa mãn: -2 < x1x2 

Chọn C

8 tháng 1 2017