K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
23 tháng 6 2020

\(y'=x^2+2\left(m-1\right)x+m\)

Để hàm số nghịch biến trên \(\left(0;1\right)\Leftrightarrow y'\le0\) ; \(\forall x\in\left(0;1\right)\)

\(\Leftrightarrow\left\{{}\begin{matrix}y'\left(0\right)\le0\\y'\left(1\right)\le0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}m\le0\\3m-1\le0\end{matrix}\right.\) \(\Rightarrow m\le0\)

AH
Akai Haruma
Giáo viên
13 tháng 7 2017

Lời giải:

Dễ tìm được \(A(0,5);B(1,4)\) là hai điểm cực trị của đồ thị \((C)\)

Xét điểm $I(a,b)$ sao cho \(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IO}=\overrightarrow{0}\)

\(\Leftrightarrow(-a,5-b)+(1-a,4-b)+(-a,-b)=0\)

\(\Rightarrow \left\{\begin{matrix} a=\frac{1}{3}\\ b=3\end{matrix}\right.\Rightarrow \left\{\begin{matrix} \overrightarrow{IA}=(\frac{-1}{3},2)\\ \overrightarrow{IB}=(\frac{2}{3},1)\\ \overrightarrow{IO}=(\frac{-1}{3},-3)\end{matrix}\right.\)

Ta có:

\(P=(\overrightarrow{MI}+\overrightarrow{IO})(\overrightarrow{MI}+\overrightarrow{IA})+(\overrightarrow{MI}+\overrightarrow{IB})(\overrightarrow{MI}+\overrightarrow{IA})+(\overrightarrow{MI}+\overrightarrow {IO})(\overrightarrow{MI}+\overrightarrow{IB})\)

\(P=3MI^2+2\overrightarrow{MI}(\overrightarrow{IA}+\overrightarrow{IB}+\overrightarrow{IC})+\overrightarrow{IA}.\overrightarrow{IO}+\overrightarrow{IA}.\overrightarrow{IB}+\overrightarrow{IB}.\overrightarrow{IO}\)

\(P=3MI^2+\overrightarrow{IA}.\overrightarrow{IO}+\overrightarrow{IA}.\overrightarrow{IB}+\overrightarrow{IB}.\overrightarrow{IO}=3MI^2-\frac{22}{3}\)

Để P min thì \(MI_{\min}\) hay $I$ là hình chiếu của $M$ lên mp \(x+3y+7=0\)

Từ đây dễ dàng tìm được \(M(\frac{-13}{10};\frac{-19}{10})\)

28 tháng 7 2019
https://i.imgur.com/6aR3ny6.jpg
28 tháng 7 2019

bài 1 bạn dò lại xem. Còn bài 2 tương tự

NV
11 tháng 7 2020

- Với \(a=-1\Rightarrow y=0\) vô nghiệm \(\Rightarrow\) miền giá trị của y ko chứa 0 (ko thỏa mãn)

- Với \(a< 0;a\ne-1\Rightarrow\left\{{}\begin{matrix}\lim\limits_{x\rightarrow-\sqrt{-a}^+}y=+\infty\\\lim\limits_{x\rightarrow\sqrt{-a}^-}y=-\infty\end{matrix}\right.\) \(\Rightarrow\) miền giá trị của y là R (thỏa mãn) (chính xác hơn là phải xét 2 TH \(a< -1\) và \(-1< a< 0\) )

- Với \(a=0\Rightarrow y'=\frac{-x^2-2x}{x^4}\Rightarrow y\ge y\left(-2\right)=-\frac{1}{4}\Rightarrow\) miền giá trị của y chứa [0;1] (thỏa mãn)

- Với \(a>0\)

Gọi m và M lần lượt là GTNN và GTLN của hàm số, để tập giá trị của y chứa \(\left[0;1\right]\) \(\Leftrightarrow\left\{{}\begin{matrix}m\le0\\M\ge1\end{matrix}\right.\)

\(y'=\frac{x^2+a-2x\left(x+1\right)}{\left(x^2+a\right)^2}=\frac{-x^2-2x+a}{\left(x^2+a\right)^2}\) luôn có 2 nghiệm pb trái dấu

\(-x^2-2x+a=0\Rightarrow\left(x+1\right)^2=a+1\Rightarrow\left[{}\begin{matrix}x_1=-1-\sqrt{a+1}\\x_2=-1+\sqrt{a+1}\end{matrix}\right.\)

\(x_1< -1\Rightarrow y\left(x_1\right)< 0\Rightarrow m< 0\); \(\forall a>0\)

Do đó ta chỉ cần tìm a để \(M\ge1\)

\(\Leftrightarrow y\left(x_2\right)\ge1\Leftrightarrow\frac{\sqrt{a+1}}{\left(-1+\sqrt{a+1}\right)^2+a}\ge1\)

\(\Leftrightarrow\sqrt{a+1}\ge2a+2-2\sqrt{a+1}\)

\(\Leftrightarrow3\sqrt{a+1}\ge2a+2\)

\(\Leftrightarrow-4a^2+a+5\ge0\)

\(\Rightarrow-1\le a\le\frac{5}{4}\)

Kết hợp lại, ta được \(\left\{{}\begin{matrix}a\le\frac{5}{4}\\a\ne-1\end{matrix}\right.\)

11 tháng 7 2020

Mình cảm ơn nhiều.