K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Để hàm số y=(2m-10)x-7 là hàm số bậc nhất thì \(2m-10\ne0\)

=>\(2m\ne10\)

=>\(m\ne5\)

b: Vì \(3m^2+1>=1>0\forall m\)

nên hàm số \(y=\left(3m^2+1\right)x+23\) là hàm số bậc nhất với mọi m

24 tháng 12 2023

Sửa đề: \(y=mx^2+x\left(m-1\right)+2\)

Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m=0\\m-1\ne0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=0\\m\ne1\end{matrix}\right.\)

=>m=0

a: Để hàm số (1) là hàm số bậc nhất thì \(m^2+m-2< >0\)

=>\(m^2+2m-m-2< >0\)

=>\(\left(m+2\right)\left(m-1\right)< >0\)

=>\(\left\{{}\begin{matrix}m+2< >0\\m-1< >0\end{matrix}\right.\Leftrightarrow m\notin\left\{-2;1\right\}\)

Để hàm số nghịch biến thì (m+2)(m-1)<0

TH1: \(\left\{{}\begin{matrix}m+2>0\\m-1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-2\\m< 1\end{matrix}\right.\)

=>-2<m<1

TH2: \(\left\{{}\begin{matrix}m+2< 0\\m-1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>1\\m< -2\end{matrix}\right.\)

=>Loại

b: Để hàm số (1) là hàm hằng thì \(m^2+m-2=0\)

=>(m+2)(m-1)=0

=>\(\left[{}\begin{matrix}m+2=0\\m-1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)

5 tháng 11 2023

a) Để hàm số đã cho là hàm số bậc nhất thì:

3m + 5 ≠ 0

⇔ 3m ≠ -5

⇔ m ≠ -5/3

b) Để hàm số đã cho là hàm số bậc nhất thì:

2m² + 3 ≠ 0

⇔2m² ≠ -3 (luôn đúng)

Vậy m ∈ R

c) Để hàm số đã cho là hàm số bậc nhất thì:

m² - 3m = 0 và 3 - m ≠ 0

*) m² - 3m = 0

⇔ m(m - 3) = 0

⇔ m = 0 hoặc m - 3 = 0

**) m - 3 = 0

⇔ m = 3

*) 3 - m ≠ 0

⇔ m ≠ 3

Vậy m = 0 thì hàm số đã cho là hàm số bậc nhất

a: Để đây là hàm số bậc nhất thì 3m+5<>0

=>3m<>-5

=>\(m< >-\dfrac{5}{3}\)

b: Để đây là hàm số bậc nhất thì \(2m^2+3\ne0\)

mà \(2m^2+3>=3>0\forall m\)

nên \(m\in R\)

c: Để đây là hàm số bậc nhất thì \(\left\{{}\begin{matrix}m^2-3m=0\\3-m< >0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\left(m-3\right)=0\\m< >3\end{matrix}\right.\Leftrightarrow m=0\)

12 tháng 9 2023

Chu vi lúc đầu là : \(\left(2+3\right)x2\left(m\right)\)

Chu vi lúc sau là : \(\left(2+x+3+x\right).2=\left(5+2x\right).2=4x+10\) 

\(\Rightarrow\) Hàm số chu vi là : \(y=4x+10\) là hàm bậc nhất có :

\(\left\{{}\begin{matrix}a=4\\b=10\end{matrix}\right.\)

1 tháng 9 2019

AH
Akai Haruma
Giáo viên
27 tháng 11 2023

Lời giải:
a. Để hs trên là hàm bậc nhất thì:

$4m2-4m+1\neq 0$

$\Leftrightarrow (2m-1)^2\neq 0$

$\Leftrightarrow 2m-1\neq 0$

$\Leftrightarrow m\neq \frac{1}{2}$

b.

$f(1)=(4m^2-4m+1).1-3=4m^2-4m-2=6$

$\Leftrightarrow 4m^2-4m-8=0$

$\Leftrightarrow m^2-m-2=0$

$\Leftrightarrow (m+1)(m-2)=0$

$\Leftrightarrow m=-1$ hoặc $m=2$

 

23 tháng 12 2023

Câu 5:

a: Khi m=3 thì \(f\left(x\right)=\left(2\cdot3+1\right)x-3=7x-3\)

\(f\left(-3\right)=7\cdot\left(-3\right)-3=-21-3=-24\)

\(f\left(0\right)=7\cdot0-3=-3\)

b: Thay x=2 và y=3 vào f(x)=(2m+1)x-3, ta được:

\(2\left(2m+1\right)-3=3\)

=>2(2m+1)=6

=>2m+1=3

=>2m=2

=>m=1

c: Thay m=1 vào hàm số, ta được:

\(y=\left(2\cdot1+1\right)x-3=3x-3\)

*Vẽ đồ thị

loading...

d: Để hàm số y=(2m+1)x-3 là hàm số bậc nhất thì \(2m+1\ne0\)

=>\(2m\ne-1\)

=>\(m\ne-\dfrac{1}{2}\)

e: Để đồ thị hàm số y=(2m+1)x-3 song song với đường thẳng y=5x+1 thì \(\left\{{}\begin{matrix}2m+1=5\\-3\ne1\end{matrix}\right.\)

=>2m+1=5

=>2m=4

=>m=2

2 tháng 8 2020

Ta có \(y'=\frac{x^2-2mx+m^2}{\left(x-2m\right)^2},x\ne2m\)

Để y có hai khoảng đồng biến trên toàn miền xác định thì

\(y'\ge0,\forall x\ne2m\)

\(\Leftrightarrow x^2-4mx+m^2\ge0,\forall x\ne2m\)

\(\Leftrightarrow\Delta'\le0\Leftrightarrow4m^2-m^2\le0\)

\(\Leftrightarrow3m^2\le0\Leftrightarrow m=0\)

Câu tiếp theo:

y đồng biến trên\(\left(1,\infty\right)\Leftrightarrow y'\ge0,\forall x\in\left(1,+\infty\right)\)

     \(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=x^2-4mx+m^2\ge0,\forall x>1\\2m\notin\left(1,\infty\right)\end{cases}}\)

Để cj suy nghĩ mai lm tiếp=.=

2 tháng 8 2020

rõ ràng m=0 thì đk trên thõa mãn.

Với \(m=0:\Delta'=3m^2>0\) nên ta có:

\(f\left(x\right)\ge0,\forall x>1\Leftrightarrow x_1< x_2\le1\)

\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\f\left(1\right)\ge\\\frac{S}{2}-1< 0\end{cases}0}\)

\(f\left(1\right)\ge0\Leftrightarrow m^2-4m+1\ge0\Leftrightarrow m\le2-\sqrt{3}\)hay\(m\ge2+\sqrt{3}\)

\(\frac{S}{2}-1< 0\Leftrightarrow2m-1< 0\Leftrightarrow m< \frac{1}{2}\)

\(2m\notin\left(1,\infty\right)\Leftrightarrow2m\le1\Leftrightarrow m\le\frac{1}{2}\)

Vậy \(m\le2-\sqrt{3}\)là giá trị m cần tìm