Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Mình quên mất. Đng học lp 8 nhưng học trc chương trình nên quên sửa lớp luôn
Mình làm mẫu cho 1 câu nha !
a, ĐKXĐ : x khác -3 ; -1 ; 2
Biểu thức = 2/x-2 - 2/(x+1).(x-2) . (1+x) = 2/x-2 - 2/x-2 = 0
=> Với điều kiện xác định thì giá trị biểu thức ko phụ thuộc vào biến
k mk nha
a)\(M=\frac{x^2}{\left(x+y\right)\left(1-y\right)}-\frac{y^2}{\left(x+y\right)\left(1+x\right)}-\frac{x^2y^2}{\left(1+x\right)\left(1-y\right)}\left(ĐKXĐ:x\ne-1;y\ne1\right)\)
\(M=\frac{x^2\left(1+x\right)-y^2\left(1-y\right)-x^2y^2\left(x+y\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x^2+x^3-y^2+y^3-x^3y^2-x^2y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(x-y\right)\left(x+y\right)-x^2y^2\left(x+y\right)+x^3+y^3}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(x-y\right)\left(x+y\right)-x^2y^2\left(x+y\right)+\left(x+y\right)\left(x^2-xy+y^2\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(x+y\right)\left(x-y-x^2y^2+x^2-xy+y^2\right)}{\left(x+y\right)\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x-y-x^2y^2+x^2-xy+y^2}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x-xy+x^2-x^2y^2+y^2-y}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x\left(1-y\right)+x^2\left(1-y\right)\left(1+y\right)-y\left(1-y\right)}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{\left(1-y\right)\left(x+x^2\left(1+y\right)-y\right)}{\left(1-y\right)\left(1+x\right)}\)
\(M=\frac{x\left(x+1\right)+y\left(x-1\right)\left(x+1\right)}{1+x}\)
\(M=x+xy-y\)
b)Ta có:\(x+xy-y=-7\)
\(x\left(y+1\right)-y-1+8=0\)
\(\left(x-1\right)\left(y+1\right)=-8\)
Ta có : -8 = 8 . -1 = -8 . 1 = -2.4=-4.2
Rồi chỗ đó tự thay nha
Đây là bài dài nhất trong olm của mk
Đáp án B
\(y=\left(\sqrt{3}-1\right)x+5x-1=\left(4+\sqrt{3}\right)x-1\)
Mà \(4+\sqrt{3}>0\) nên hàm số đã cho luôn đồng biến
\(e ) Để \) \(M\)\(\in\)\(Z \) \(thì\) \(1 \)\(⋮\)\(x +3\)
\(\Leftrightarrow\)\(x + 3 \)\(\in\)\(Ư\)\((1)\)\(= \) { \(\pm\)\(1 \) }
\(Lập\) \(bảng :\)
\(x +3\) | \(1\) | \(- 1\) |
\(x\) | \(-2\) | \(- 4\) |
\(Vậy : Để \) \(M\)\(\in\)\(Z\) \(thì\) \(x\)\(\in\){ \(- 4 ; - 2\) }
e) Để M \(\in\)Z <=> \(\frac{1}{x+3}\in Z\)
<=> 1 \(⋮\)x + 3 <=> x + 3 \(\in\)Ư(1) = {1; -1}
Lập bảng:
x + 3 | 1 | -1 |
x | -2 | -4 |
Vậy ....
f) Ta có: M > 0
=> \(\frac{1}{x+3}\) > 0
Do 1 > 0 => x + 3 > 0
=> x > -3
Vậy để M > 0 khi x > -3 ; x \(\ne\)3 và x \(\ne\)-3/2
Bài 1:
a)
ĐKXĐ: \(x^2+y^2\neq 0\Leftrightarrow x,y\) không cùng đồng thời bằng $0$
Tức là: \(\left[\begin{matrix} x=0; y\neq 0\\ y=0; x\neq 0\\ x\neq 0; y\neq 0\end{matrix}\right.\)
b)
ĐKXĐ: \(x^2-2x+1\neq 0\Leftrightarrow (x-1)^2\neq 0\Leftrightarrow x\neq 1\)
c)
ĐKXĐ: \((x+3)^2+(y-2)^2\neq 0\Leftrightarrow x+3,y-2\) không cùng đồng thời bằng $0$
Tức là \(\left[\begin{matrix} x=-3, y\neq 2\\ x\neq -3; y=2\\ x\neq -3; y\neq 2\end{matrix}\right.\)
d)
ĐKXĐ: \(x^2+6x+10\neq 0\Leftrightarrow (x+3)^2+1\neq 0\Leftrightarrow (x+3)^2\neq -1\)
\(\Leftrightarrow x\in\mathbb{R}\)
Lời giải:
a)
ĐKXĐ: \(x^2+3x-10\neq 0\Leftrightarrow (x-2)(x+5)\neq 0\Leftrightarrow x\neq 2; x\neq -5\)
Để giá trị phân thức bằng $0$ thì: \(x^2-4=0\Leftrightarrow (x-2)(x+2)=0\Rightarrow \left[\begin{matrix} x=2\\ x=-2\end{matrix}\right.\)
Kết hợp với ĐKXĐ suy ra $x=-2$
b)
ĐKXĐ: \(x^3-3x^2-4x\neq 0\Leftrightarrow x(x^2-3x-4)\neq 0\)
\(\Leftrightarrow x(x+1)(x-4)\neq 0\Leftrightarrow x\neq 0; x\neq -1; x\neq 4\)
Để giá trị của phân thức bằng $0$ thì $x^3-16x=0$
$\Leftrightarrow x(x^2-16)=0\Leftrightarrow x(x-4)(x+4)=0$
\(\Leftrightarrow \left[\begin{matrix} x=0\\ x=\pm 4\end{matrix}\right.\)
Kết hợp với ĐKXĐ suy ra $x=-4$
c)
ĐKXĐ: \(x^3+2x-3\neq 0\Leftrightarrow (x-1)(x^2+x+3)\neq 0\Leftrightarrow x\neq 1\)
Để giá trị phân thức bằng $0$ thì:
$x^3+x^2-x-1=0\Leftrightarrow (x-1)(x+1)^2=0\Leftrightarrow x=1$ hoặc $x=-1$
Kết hợp với ĐKXĐ suy ra $x=-1$
a) Rút gọn:
\(M=\frac{x^2}{\left(x+y\right).\left(1-y\right)}-\frac{y^2}{\left(x+y\right).\left(x+1\right)}-\frac{x^2y^2}{\left(1+x\right).\left(1-y\right)}\)
\(M=\frac{x^2}{\left(x+y\right).\left(1-y\right)}-\frac{y^2}{\left(x+y\right).\left(x+1\right)}-\frac{x^2y^2}{\left(x+1\right).\left(1-y\right)}\)
\(M=\frac{x^2.\left(x+1\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}-\frac{y^2.\left(1-y\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}-\frac{x^2y^2.\left(x+y\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}\)
\(M=\frac{x^2.\left(x+1\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}+\frac{-y^2.\left(1-y\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}+\frac{-x^2y^2.\left(x+y\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}\)
\(M=\frac{x^2.\left(x+1\right)-y^2.\left(1-y\right)-x^2y^2.\left(x+y\right)}{\left(x+y\right).\left(1-y\right).\left(x+1\right)}\)
\(M=x^2-y^2-x^2y^2.\)
Chúc bạn học tốt!
Ta có \(y'=\frac{x^2-2mx+m^2}{\left(x-2m\right)^2},x\ne2m\)
Để y có hai khoảng đồng biến trên toàn miền xác định thì
\(y'\ge0,\forall x\ne2m\)
\(\Leftrightarrow x^2-4mx+m^2\ge0,\forall x\ne2m\)
\(\Leftrightarrow\Delta'\le0\Leftrightarrow4m^2-m^2\le0\)
\(\Leftrightarrow3m^2\le0\Leftrightarrow m=0\)
Câu tiếp theo:
y đồng biến trên\(\left(1,\infty\right)\Leftrightarrow y'\ge0,\forall x\in\left(1,+\infty\right)\)
\(\Leftrightarrow\hept{\begin{cases}f\left(x\right)=x^2-4mx+m^2\ge0,\forall x>1\\2m\notin\left(1,\infty\right)\end{cases}}\)
Để cj suy nghĩ mai lm tiếp=.=
rõ ràng m=0 thì đk trên thõa mãn.
Với \(m=0:\Delta'=3m^2>0\) nên ta có:
\(f\left(x\right)\ge0,\forall x>1\Leftrightarrow x_1< x_2\le1\)
\(\Leftrightarrow\hept{\begin{cases}\Delta'>0\\f\left(1\right)\ge\\\frac{S}{2}-1< 0\end{cases}0}\)
\(f\left(1\right)\ge0\Leftrightarrow m^2-4m+1\ge0\Leftrightarrow m\le2-\sqrt{3}\)hay\(m\ge2+\sqrt{3}\)
\(\frac{S}{2}-1< 0\Leftrightarrow2m-1< 0\Leftrightarrow m< \frac{1}{2}\)
\(2m\notin\left(1,\infty\right)\Leftrightarrow2m\le1\Leftrightarrow m\le\frac{1}{2}\)
Vậy \(m\le2-\sqrt{3}\)là giá trị m cần tìm