\(f\left(x\right)=\left\{{}\begin{matrix}\frac{x^2-x-2}{x-2}\l...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
13 tháng 3 2020

\(\lim\limits_{x\rightarrow2}f\left(x\right)=\lim\limits_{x\rightarrow2}\frac{\left(x+1\right)\left(x-2\right)}{\left(x-2\right)}=\lim\limits_{x\rightarrow2}\left(x+1\right)=3\)

Để hàm số liên tục tại x=2

\(\Rightarrow\lim\limits_{x\rightarrow2}f\left(x\right)=f\left(2\right)\Leftrightarrow m^2+4m-1=3\)

\(\Leftrightarrow m^2+4m-4=0\Rightarrow m=-2\pm2\sqrt{2}\)

NV
10 tháng 3 2022

Hàm \(f\left(x\right)\) viết lại: \(f\left(x\right)=\left\{{}\begin{matrix}\dfrac{x^2-3x+2}{x-2}\text{ khi }x>2\\\dfrac{x^2-3x+2}{2-x}\text{ khi }x< 2\\a,x=2\end{matrix}\right.\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\dfrac{x^2-3x+2}{x-2}=\lim\limits_{x\rightarrow2^+}\dfrac{\left(x-1\right)\left(x-2\right)}{x-2}=\lim\limits_{x\rightarrow2^+}\left(x-1\right)=1\)

\(\lim\limits_{x\rightarrow2^-}f\left(x\right)=\lim\limits_{x\rightarrow2^-}\dfrac{x^2-3x+2}{2-x}=\lim\limits_{x\rightarrow2^-}\dfrac{\left(x-1\right)\left(x-2\right)}{-\left(x-2\right)}=\lim\limits_{x\rightarrow2^-}\left(1-x\right)=-1\)

\(\Rightarrow\lim\limits_{x\rightarrow2^+}f\left(x\right)\ne\lim\limits_{x\rightarrow2^-}f\left(x\right)\)

\(\Rightarrow\) Không tồn tại \(\lim\limits_{x\rightarrow2}f\left(x\right)\Rightarrow\) hàm luôn  luôn gián đoạn tại \(x=2\)

Hay ko tồn tại a thỏa mãn yêu cầu đề bài

17 tháng 11 2023

loading...loading...loading...  

4 tháng 4 2017

a) Ta có ham-so-lien-tuc = 22 +2.2 +4 = 12.

ham-so-lien-tucnên hàm số y = g(x) gián đoạn tại x0 = 2.

b) Để hàm số y = f(x) liên tục tại x0 = 2 thì ta cần thay số 5 bởi số 12

AH
Akai Haruma
Giáo viên
18 tháng 11 2023

Đề lỗi công thức toán rồi bạn. Không nhìn thấy được biểu thức hiển thị.

NV
13 tháng 3 2020

a/ Với \(x\ne\pm1\) hàm số liên tục

Với \(x=-1\) hàm số gián đoạn

Xét tại \(x=1\)

\(\lim\limits_{x\rightarrow1}f\left(x\right)=\lim\limits_{x\rightarrow1}\frac{x^2+2x-1}{x^2-1}=\frac{2}{0}=+\infty\ne f\left(1\right)\)

Vậy hàm số gián đoạn tại \(x=1\)

b/ Với \(x\ne2\) hàm số liên tục (ko cần xét tại \(x=1\) do tại \(x=1\Rightarrow f\left(x\right)=2x^2-6\) là hàm đa thức nên hiển nhiên liên tục)

Xét tại \(x=2\)

\(\lim\limits_{x\rightarrow2^+}f\left(x\right)=\lim\limits_{x\rightarrow2^+}\frac{\left(2-x\right)\left(x^2-3x+1\right)}{\left(x-1\right)\left(x-2\right)}=\lim\limits_{x\rightarrow2^+}\frac{x^2-3x+1}{1-x}=1\ne f\left(2\right)\)

Vậy hàm số gián đoạn tại \(x=2\) (ko cần xét thêm giới hạn trái tại 2)

14 tháng 4 2017

\(\lim\limits_{x\rightarrow0}\left|f\left(x\right)\right|=\lim\limits_{x\rightarrow0}\left|x^2sin\dfrac{1}{x}\right|< \lim\limits_{x\rightarrow0}\left|x^2\right|=0\).
Vậy \(\lim\limits_{x\rightarrow0}f\left(x\right)=0\).
\(f\left(0\right)=A\).
Để hàm số liên tục tại \(x=0\) thì \(\lim\limits_{x\rightarrow0}f\left(x\right)=f\left(0\right)\Leftrightarrow A=0\).
Để xét hàm số có đạo hàm tại \(x=0\) ta xét giới hạn:
\(\lim\limits_{x\rightarrow0}\dfrac{f\left(x\right)-f\left(0\right)}{x-0}=\lim\limits_{x\rightarrow0}\dfrac{x^2sin\dfrac{1}{x}}{x}=\lim\limits_{x\rightarrow0}xsin\dfrac{1}{x}=0\).
Vậy hàm số có đạo hàm tại \(x=0\).