K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2020

f(x) chia hết cho ( 2x + 1 ) <=> f(x) có nhân tử là ( 2x + 1 )

hay f(x) có nghiệm là x = -1/2

=> f(-1/2) = 0

=> 2.(-1/2)3 + 3.(-1/2)2 - (-1/2) + m = 0

=> 2.(-1/8) + 3.1/4 + 1/2 + m = 0

=> -1/4 + 3/4 + 1/2 + m = 0

=> 1 + m = 0

=> m = -1

Vậy với m = -1 thì f(x) = 2x3 + 3x2 - x + m chia hết cho ( 2x + 1 )

7 tháng 11 2019

Áp dụng định lý Bezout: f(x) chia hết cho ax + b \(\Leftrightarrow f\left(\frac{-b}{a}\right)=0\)

Đặt \(g\left(x\right)=4x^4+2x^3+3x^2-4x+5+m\)

Để đa thức \(g\left(x\right)=4x^4+2x^3+3x^2-4x+5+m\)chia hết cho nhị thức 2x + 3 thì :

\(g\left(\frac{-3}{2}\right)=4.\left(\frac{-3}{2}\right)^4+2.\left(\frac{-3}{2}\right)^3+3.\left(\frac{-3}{2}\right)^2-4.\frac{-3}{2}+5+m=0\)

\(\Leftrightarrow\frac{81}{4}-\frac{27}{4}+\frac{27}{4}+6+5+m=0\)

\(\Leftrightarrow\frac{81}{4}-11+m=0\)

\(\Leftrightarrow\frac{37}{4}+m=0\)

\(\Leftrightarrow m=\frac{-37}{4}\)

Vậy \(m=\frac{-37}{4}\)thì \(4x^4+2x^3+3x^2-4x+5+m\)chia hết cho 2x + 3

Bài 2:

x^3+6x^2+12x+m chia hết cho x+2

=>x^3+2x^2+4x^2+8x+4x+8+m-8 chia hết cho x+2

=>m-8=0

=>m=8

a: Ta có \(x^3-4x^2+x-n⋮x-4\)

\(\Leftrightarrow x^2\left(x-4\right)+x-4+n+4⋮x-4\)

=>n+4=0

hay n=-4

b: ta có: \(4x^3-2x^2+2x+n⋮2x+1\)

\(\Leftrightarrow4x^3+2x^2-4x^2-2x+4x+2+n-2⋮2x+1\)

=>n-2=0

hay n=2

c: \(\Leftrightarrow x^4-3x^3+3x^3-9x^2+6x^2-18x+21x-63-n+63⋮x-3\)

=>63-n=0

hay n=63

20 tháng 10 2019

Để f(x) chia hết cho g(x). Áp dụng định lý Bozu ta được:

f(3/2) =0 <=>  f(3/2)= 2 *(3/2)^3 -7*(3/2)^2 +5*3/2 +m=0 

<=>-3/2 +m=0 <=> m=3/2

22 tháng 4 2020

f(x) = 2x^3 - 7x^2 + 5x + m 
= 2x^3 - 3x^2 - 4x^2 + 6x - x + m 
= x^2 (2x - 3) - 2x( 2x - 3) - (x - m) 
= (2x - 3) (x^2 - 2x) - (x-m) chia chết cho g(x) = 2x - 3
--> x - m chia hết cho 2x - 3
-> 2x - 2m cũng chia hết cho 2x - 3
Gọi 2x - 2m = (2x - 3) * k 
Ta có : 2x - 2m = 2xk - 3k
Áp dụng phương  pháp đồng nhất thức hệ số, suy ra k = 1 và 3k = 2m
Suy ra, m = 3/2 * k = 3/2 * 1 = 3/2.
Vậy m = 3/2

 


 


 

a: \(2x^5+4x^4-7x^3-44⋮2x^2-7\)

\(\Leftrightarrow2x^5-7x^3+4x^4-14x^2+14x^2-49+5⋮2x^2-7\)

\(\Leftrightarrow2x^2-7\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{2;-2;1;-1\right\}\)

b: \(2x^2+3x+3⋮2x-1\)

\(\Leftrightarrow2x^2-x+4x-2+5⋮2x-1\)

\(\Leftrightarrow2x-1\in\left\{1;-1;5;-5\right\}\)

hay \(x\in\left\{1;0;3;-2\right\}\)