K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 11 2021

Sửa: Đồ thị hàm số: \(y=\left(m-1\right)x+3m-2\)

Để đths đi qua \(A\left(-2;2\right)\Leftrightarrow2\left(1-m\right)+3m-2=2\)

\(\Leftrightarrow2-2m+3m-2=2\\ \Leftrightarrow m=2\)

25 tháng 3 2019

Đáp án A

19 tháng 1 2016

Khi m = 2 : y = x + 5

TXĐ : D = R.

Tính biến thiên :

  • a = 1 > 0 hàm số đồng biến trên R.

bảng biến thiên :

x

-∞

 

+∞

y

-∞

\nearrow

+∞

Bảng giá trị :

x

0

-5

y

5

0

Đồ thị hàm số y = x + 5 là đường thẳng đi qua hai điểm A(0, 5) và B(-5; 0).

b/(dm) đi qua điểm A(4, -1) :

4 = (m -1)(-1) +2m +1

<=> m = 2

3. hàm số nghịch biến khi : a = m – 1 < 0 <=> m < 1

4.(dm) đi qua điểm  cố định M(x0, y0) :

Ta được  : y0 = (m -1)( x0) +2m +1 luôn đúng mọi m.

<=> (x0 + 2) m = y0 – 1 + x0(*)

(*) luôn đúng mọi m khi :

x0 + 2= 0 và  y0 – 1  + x0 = 0

<=> x0 =- 2  và  y0 = 3

Vậy : điểm  cố định M(-2, 3)

 

a) Thay x=-1 và y=4 vào (d), ta được:

\(3m\cdot\left(-1\right)+m-2=4\)

\(\Leftrightarrow-2m=6\)

hay m=-3

b) Để (d)//(Δ) thì \(\left\{{}\begin{matrix}3m=6\\m-2\ne-1\end{matrix}\right.\Leftrightarrow m=2\)

5 tháng 8 2021

cho mình xin câu C với bạn !! :)

 

 

27 tháng 12 2020

Phương trình hoành độ giao điểm:

\(x^2+2mx-3m=-2x+3\)

\(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\)

Hai đồ thị cắt nhau tại hai điểm phân biệt A, B khi phương trình \(\Leftrightarrow x^2+2\left(m+1\right)x-3m-3=0\) có hai nghiệm phân biệt

\(\Leftrightarrow\Delta'=m^2+5m+4>0\)

\(\Leftrightarrow\left[{}\begin{matrix}m>-1\\m< -4\end{matrix}\right.\)

Phương trình có hai nghiệm phân biệt \(x=-m-1\pm\sqrt{m^2+5m+4}\)

\(x=-m-1+\sqrt{m^2+5m+4}\Rightarrow y=2m+5-2\sqrt{m^2+5m+4}\)

\(\Rightarrow A\left(-m-1+\sqrt{m^2+5m+4};2m+5-2\sqrt{m^2+5m+4}\right)\)

\(x=-m-1-\sqrt{m^2+5m+4}\Rightarrow y=2m+5+2\sqrt{m^2+5m+4}\)

\(\Rightarrow B\left(-m-1-\sqrt{m^2+5m+4};2m+5+2\sqrt{m^2+5m+4}\right)\)

\(\Rightarrow\overrightarrow{AB}=\left(-2\sqrt{m^2+5m+4};4\sqrt{m^2+5m+4}\right)\)

\(\Rightarrow AB=\sqrt{4\left(m^2+5m+4\right)+16\left(m^2+5m+4\right)}=2\sqrt{5\left(m^2+5m+4\right)}=4\sqrt{5}\)

\(\Leftrightarrow\sqrt{m^2+5m+4}=2\)

\(\Leftrightarrow m^2+5m=0\)

\(\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=-5\left(tm\right)\end{matrix}\right.\)

27 tháng 12 2020

Xét phương trình hoành độ giao điểm của (d): y = -2x + 3 và 

(P) : x2 + 2mx - 3m = 0

x2 + 2mx - 3m = -2x + 3 

⇔ x2 + 2(m+1) - 3(m+1) = 0 (*)

Để (d) cắt (P) taị 2 điểm phân biệt thì (*) có hai nghiệm phân biệt. Khi đó Δ' > 0 

⇔ (m+1)2 + 3(m+1) > 0

⇔ (m+1)(m+4) > 0

⇔ m ∈ R \ (-4 ; -1) (!)

Do A,B là giao điểm của (d) và (P) nên hoành độ của chúng là nghiệm của (*)

Theo định lí Viet : \(\left\{{}\begin{matrix}x_A+x_B=-2m-2=-2\left(m+1\right)\\x_A.x_B=-3m-3=-3\left(m+1\right)\end{matrix}\right.\) 

Do A,B ∈ d nên hoành độ và tung độ của chúng thỏa mãn

y = -2x + 3 hay \(\left\{{}\begin{matrix}y_A=-2x_A+3\\y_B=-2x_B+3\end{matrix}\right.\)

Để giải được bài này thì mình sẽ sử dụng công thức tính độ dài của vecto AB (nếu bạn chưa học đến thì xin lỗi)

AB = |\(\overrightarrow{AB}\)| = 4\(\sqrt{5}\)

⇒ (xA - xB)2 + (yA - yB)2 = 80

⇒ (xA - xB)2 + (-2xA + 2xB)2 = 80

Sau đó bạn thay m vào rồi biến đổi, kết quả ta được

(m+1)(m+4) = 4 \(\Leftrightarrow\left[{}\begin{matrix}m=0\\m=-5\end{matrix}\right.\)(thỏa mãn (!) )

Vậy tập hợp các giá trị của m thỏa mãn yêu cầu bài toán là 

M = {0 ; -5}

 

10 tháng 12 2015

A) Để đồ thị đi qua điểm M(-1, 1) thì thay x = -1, y = 1 vào hàm số ta có:

   1 = (2m-1).(-1) + m + 1

=> m = 1

B) Hàm số đã cho là hàm bậc nhất, đồ thị là đường thẳng nên không thể đồ thị cắt trục hoành tại hai điểm được

22 tháng 6 2020

a)y=(2m-1)x+m+1
Đồ thị hàm số đi qua điểm M(-1;1) khi và chỉ khi
1=(2m-1)(-1)+m+1
Giải phương trình ẩn m, tìm được: m=1
b)y=(2m-1)x+m+1

Cho x=0⇒y=m+1⇒A(0; m+1 ) ⇒OA =\(\left|m+1\right|\)
Cho y =0 ⇒x =\(\frac{-m-1}{2m-1}\Rightarrow B\left(\frac{-m-1}{2m-1};0\right)\)

\(\Rightarrow OB=\left|\frac{-m-1}{2m-1}\right|=\frac{\left|m+1\right|}{\left|2m-1\right|}\)

△AOB cân ⇔\(\left\{{}\begin{matrix}OA=OB\\OA>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}\left|m+1\right|=\frac{\left|m+1\right|}{\left|2m-1\right|}\\\left|m+1\right|>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}\left|2m-1\right|=1\\m\ne-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2m-1=1\\2m-1=-1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}m=1\\m=0\end{matrix}\right.\)

Vậy với m = 0 hoặc m = 1 thì đồ thị hàm số thỏa mãn yêu cầu của bài toán

8 tháng 1 2021

phương trình hoành độ giao điểm của f(x) với y = -1 là

x4 - (3m + 2)x2 + 3m = -1

⇔ x4 - (3m + 2)x2 + 3m + 1 = 0 (1)

Đặt x2 = t (ĐK : t ≥ 0)

Phương trình trở thành 

t2 - (3m + 2)t + 3m + 1 = 0 (2)

Để (1) có 4 nghiệm phân biệt nhỏ hơn 2 thì (2) có 2 nghiệm phân biệt thỏa mãn 0 < t < 4

⇒ \(\left\{{}\begin{matrix}9-9m< 0\\3m+1>0\end{matrix}\right.\) (cái này bạn vẽ bảng biến thiên ra là xong)

⇒ \(\dfrac{-1}{3}< m< 1\) 

Vậy tập hợp giá trị m cần tìm là \(\left(\dfrac{-1}{3};1\right)\)

Hình như 0 k lấy 

31 tháng 8 2019

Đáp án C