\(y=x^4-2\left(m+1\right)x^2-2m-1\) đạt cự...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
2 tháng 8 2021

1.

\(y'=4x^3-4\left(m+1\right)x\)

\(y''=12x-4\left(m+1\right)\)

Hàm đạt cực đại tại x=1 khi: \(\left\{{}\begin{matrix}y'\left(1\right)=0\\y''\left(1\right)< 0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}4-4\left(m+1\right)=0\\12-4\left(m+1\right)< 0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}m=0\\m>2\end{matrix}\right.\) 

Không tồn tại m thỏa mãn

2.

\(y'=4x^3-2\left(m+1\right)x\)

\(y''=12x^2-2\left(m+1\right)\)

Hàm đạt cực tiểu tại x=-1 khi:

\(\left\{{}\begin{matrix}y'\left(-1\right)=0\\y''\left(-1\right)>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-4+2\left(m+1\right)=0\\12-2\left(m+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m=1\\m< 5\end{matrix}\right.\) \(\Rightarrow m=1\)

23 tháng 5 2017

Ứng dụng đạo hàm để khảo sát và vẽ đồ thị hàm số

24 tháng 3 2016

\(\Leftrightarrow y'=0\) 

có 2 nghiệm phân biệt \(x_1,x_2\) thỏa mãn \(x_1\)<\(x_2\)<1

\(\Leftrightarrow\)\(\begin{cases}\Delta'=4m^2-m-5>0\\f\left(1\right)=-5m+7>0\\\frac{S}{2}=\frac{2m-1}{3}<1\end{cases}\)\(\Leftrightarrow\)\(\frac{5}{4}\)<m<\(\frac{7}{5}\)

22 tháng 4 2016

Ta có \(y'=3x^2-3\left(m-2\right)x-3\left(m-1\right)\), với mọi \(x\in R\)

\(y'=0\Leftrightarrow x^2-\left(m-2\right)x-m+1=0\Leftrightarrow x_1=-1;x_2=m-1\)

Chú ý rằng với m > 0 thì \(x_1< x_2\). Khi đó hàm số đạt cực đại tại \(x_1=-1\) và đạt cực tiểu tại \(x_2=m-1\). Do đó :

\(y_{CD}=y\left(-1\right)=\frac{3m}{2};y_{CT}=y\left(m-1\right)=-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\)

Từ giả thiết ta có \(2.\frac{3m}{2}-\frac{1}{2}\left(m+2\right)\left(m-1\right)^2+1\Leftrightarrow6m-6-\left(m+2\right)\left(m-1\right)^2=0\)

                                                                              \(\Leftrightarrow\left(m-1\right)\left(m^2+m-8\right)=0\Leftrightarrow m=1;m=\frac{-1\pm\sqrt{33}}{2}\)

Đối chiếu yêu cầu m > 0, ta có giá trị cần tìm là \(m=1;m=\frac{-1\pm\sqrt{33}}{2}\)

lưa ý pt \(x^2=m^2-m+1\)có nghiệm với x phải #0 vì nếu = 0 thì trùng => sai

nhưng nghiệm \(\left(+,-\right)\sqrt{m^2-m+1}\)luôn #0 rồi khỏi lo

\(y'=6x^2-6\left(m+1\right)x+6m\)

ta có y/y'=\(\left(3m-1\right)x+m^3+m^2+m\)

suy ra y= \(\left(3m-1\right)x+m^3+m^2+m\)là pt của dường thẳng đi qua A và B

de-ta \(=9\left(m+1\right)^2-36m\)

y' có 2 \(n_o\)phân biệt khi m#1

hai hoành độ của hai điểm cực trị là :

\(X=\dfrac{-b\left(+,-\right)\sqrt{deta}}{a}=\)

\(\left[{}\begin{matrix}\dfrac{m+3}{2}\\\dfrac{3m-1}{2}\end{matrix}\right.\)<=>y=\(\left[{}\begin{matrix}2m^3+5m^2+10m+3\\2m^3+11m^2+4m+1\end{matrix}\right.\)(tìm y bằng cách thế x vào pt đường thẳng )

khoảng cách giữa hai điểm AB =\(\sqrt{2}\)

ta có pt : \(2=\left(\dfrac{m+3}{2}-\dfrac{3m-1}{2}\right)^2+\left(2m^3+5m^2+10m-3-\left(2m^3+11m^2-4m+1\right)\right)^2\)

lại sai chỗ nào rồi 0 ra nghiệm , cậu tính lại thử , cách giả là như vậy

26 tháng 3 2016

\(y'=3x^2-6\left(m+1\right)x+9\)

Để hàm số có cực đại và cực tiểu :

\(\Delta'=9\left(m+1\right)^2-3.9>0\Leftrightarrow m\in\left(-\infty;-1-\sqrt{3}\right)\cup\left(-1+\sqrt{3};+\infty\right)\)

Ta có \(y=\left(\frac{1}{3}x-\frac{m+1}{3}\right)\left(3x^2-6\left(m+1\right)x+9\right)-2\left(m^2+2m-2\right)x+4m+1\)

vậy đường thẳng đi qua 2 điểm cực đại và cực tiểu là \(y=-2\left(m^2+2m-2\right)x+4m+1\)

Vì 2 điểm cực đại và cực tiểu đối xứng qua đường thẳng \(y=\frac{1}{2}x\), ta có điêu kiện cần là 

\(\left[-2\left(m^2+2m-2\right)\right]\frac{1}{2}=-1\Leftrightarrow m^2+2m-3=0\)

\(\Leftrightarrow\begin{cases}m=1\\m=-3\end{cases}\)

Khi m=1 phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2x+5. Tọa độ trung điểm cực đại và cực tiểu là 

\(\begin{cases}\frac{x_1+x_2}{2}=\frac{4}{2}=2\\\frac{y_1+y_2}{2}=\frac{-2\left(x_1+x_2\right)+10}{2}=1\end{cases}\)

Tọa độ trung điểm cực đại và cực tiể là (2;1) thuộc đường thẳng \(y=\frac{1}{2}x\)=> m=1

Khi m=-3 suy ra phương trình đường thẳng đi qua 2 điểm cực đại và cực tiểu là y=-2-11

=> m=-3 không thỏa mãn

Vậy m=1 thỏa mãn điều kiện đề bài

27 tháng 3 2016

Hàm số có cực đại, cực tiểu khi m<2. Tọa độ các điểm cực trị là :

\(A\left(0;m^2-5m+5\right);B\left(\sqrt{2-m};1-m\right);C\left(-\sqrt{2-m};1-m\right)\)

24 tháng 3 2016

Ta có \(y'=3x^2-4\left(m-1\right)x+9\)

y' là tam thức bậc hai nên hàm số đạt cực đại, cực tiểu tại \(x_1,x_2\) khi và ch ỉ khi y' có hai nghiệm phân biệt

\(\Leftrightarrow\Delta=4\left(m-1\right)^2-27>0\) \(\Leftrightarrow\)\(\begin{cases}m>1+\frac{3\sqrt{3}}{2}\\m<1-\frac{3\sqrt{3}}{2}\end{cases}\) (1)

Theo Viet \(x_1+x_2=\frac{4\left(m-1\right)}{3}\)\(x_1x_2=3\)

Khi đó \(\left|x_1-x_2\right|=2\) \(\Leftrightarrow\) \(\left(x_1+x_2\right)^2-4x_1x_2=4\)

                                  \(\Leftrightarrow\frac{16\left(m-1\right)^2}{9}-12=4\)

24 tháng 3 2016

\(y'\left(x\right)=x^2+2\left(m^2-m+2\right)x+3m^2+1\) \(\Rightarrow y''\left(x\right)=2x+2\left(m^2-m+2\right)\)

Để hàm số đạt cực tiểu tại x=-2 thì \(\begin{cases}y'\left(-2\right)=0\\y''\left(-2\right)=0\end{cases}\)\(\Rightarrow\begin{cases}-m^2+4m-3=0\\m^2-m>0\end{cases}\)

                                                                               \(\Rightarrow\begin{cases}\left(m-1\right)\left(m-3\right)=0\\m\left(m-1\right)>0\end{cases}\)

                                                                                \(\Rightarrow m=3\)

26 tháng 3 2016

Ta có : \(y'=3x^2-6mx+3\left(m^2-1\right)\)

Để hàm số có cực trị thì phương trình \(y'=0\) có 2 nghiệm phân biệt

                                                             \(\Leftrightarrow x^2-2mx+m^2-1=0\) có 2 nghiệm phân biệt

                                                             \(\Leftrightarrow\Delta=1>0\) với mọi m

Cực đại của đồ thị hàm số là A(m-1;2-2m) và cực tiểu của đồ thị hàm số là B (m+1; -2-2m)

Theo giả thiết ta có :

                         \(OA=\sqrt{2}OB\Leftrightarrow m^2+6m+1\Leftrightarrow\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)

Vậy có 2 giá trị m là \(\begin{cases}m=-3+2\sqrt{2}\\m=-3-2\sqrt{2}\end{cases}\)

14 tháng 8 2017

xA, xB lấy đâu vậy ạ?