Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/ \(\left\{{}\begin{matrix}m\ne1\\\Delta'=0-\left(m-1\right)\left(-2m+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left(m-1\right)\left(2m-1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left[{}\begin{matrix}m>1\\m< \frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>1\\m< \frac{1}{2}\end{matrix}\right.\)
b/ \(\Delta=\left(2m+1\right)^2-8m>0\)
\(\Leftrightarrow\left(2m-1\right)^2>0\Rightarrow m\ne\frac{1}{2}\)
c/ \(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2>0\Rightarrow m\ne2\)
\(x^4-2\left(m+1\right)x^2+2m+1=0\)
\(\Leftrightarrow x^4-2mx^2-2x^2+2m+1=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-2m\left(x^2-1\right)-\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2m-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x^2=2m+1\end{cases}}\)
Để pt có 4 nghiệm pb \(\Leftrightarrow\hept{\begin{cases}2m+1>0\\2m+1\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m>\frac{-1}{2}\\m\ne0\end{cases}}}\)
Vậy...
a: \(\Leftrightarrow\left(2m-4\right)^2-4\left(m^2-3\right)>=0\)
\(\Leftrightarrow4m^2-16m+16-4m^2+12>=0\)
=>-16m>=-28
hay m<=7/4
b: \(\Leftrightarrow16m^2-4\left(2m-1\right)\left(2m+3\right)=0\)
\(\Leftrightarrow16m^2-4\left(4m^2+4m-3\right)=0\)
=>4m-3=0
hay m=3/4
c: \(\Leftrightarrow\left(4m-2\right)^2-4\cdot4\cdot m^2< 0\)
=>-16m+4<0
hay m>1/4