\(x^2\) -2m+1=0
b,
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
21 tháng 4 2020

a/ \(\left\{{}\begin{matrix}m\ne1\\\Delta'=0-\left(m-1\right)\left(-2m+1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left(m-1\right)\left(2m-1\right)>0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left[{}\begin{matrix}m>1\\m< \frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>1\\m< \frac{1}{2}\end{matrix}\right.\)

b/ \(\Delta=\left(2m+1\right)^2-8m>0\)

\(\Leftrightarrow\left(2m-1\right)^2>0\Rightarrow m\ne\frac{1}{2}\)

c/ \(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2>0\Rightarrow m\ne2\)

30 tháng 4 2021

\(x^4-2\left(m+1\right)x^2+2m+1=0\)

\(\Leftrightarrow x^4-2mx^2-2x^2+2m+1=0\)

\(\Leftrightarrow x^2\left(x^2-1\right)-2m\left(x^2-1\right)-\left(x^2-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2m-1\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x^2=2m+1\end{cases}}\)

Để pt có 4 nghiệm pb \(\Leftrightarrow\hept{\begin{cases}2m+1>0\\2m+1\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m>\frac{-1}{2}\\m\ne0\end{cases}}}\)

Vậy...

a: TH1: m=-1

Pt trở thành \(-3x-2\cdot\left(-1\right)-1=0\)

=>-3x+1=0

hay x=1/3(nhận)

Th2: m<>-1

\(\text{Δ}=\left(3m\right)^2-4\left(m+1\right)\left(-2m-1\right)\)

\(=9m^2+\left(4m+4\right)\left(2m+1\right)\)

\(=9m^2+8m^2+4m+8m+4\)

\(=17m^2+12m+4\)

Đặt \(17m^2+12m+4=0\)

\(\text{Δ}=12^2-4\cdot17\cdot4=-128< 0\)

Do đó: Phương trình vô nghiệm

b: 

TH2: m<>1/2

\(\text{Δ}=\left(-m\right)^2+4\left(m+1\right)\left(2m-1\right)\)

\(=m^2+\left(4m+4\right)\left(2m-1\right)\)

\(=m^2+8m^2-4m+8m-4\)

\(=9m^2+4m-4\)

Đặt \(9m^2+4m-4=0\)

\(\text{Δ}=4^2-4\cdot9\cdot\left(-4\right)=160>0\)

Do đó: Phương trình có hai nghiệm phân biệt là:

\(\left\{{}\begin{matrix}m_1=\dfrac{-4-4\sqrt{10}}{18}=\dfrac{-2-\sqrt{10}}{9}\left(loại\right)\\m_2=\dfrac{\sqrt{10}-2}{9}\left(nhận\right)\end{matrix}\right.\)

Do đó: Phương trình (1) có hai nghiệm phân biệt

15 tháng 8 2016

a)x2+5x+3m-1

  • Pt có 2 nghiệm trái dấu khi 

\(\Delta>0\Leftrightarrow m< \frac{29}{12}\).pt có 2 nghiệm phân biệt

\(x_{1,2}=\frac{5\pm\sqrt{29-12m}}{2}\)

  • Pt có 2 nghiệm âm phân biệt khi 

\(\begin{cases}\Delta\ge0\\p=1\end{cases}\)\(\Leftrightarrow\begin{cases}29-12m\ge0\\3m-1=1\end{cases}\)\(\Leftrightarrow m=\frac{2}{3}\left(tm\right)\)

  • Pt có 2 nghiệm dương phân biệt khi

\(\begin{cases}\Delta>0\\p=\frac{c}{a}>0\\S=\frac{b}{a}>0\end{cases}\)\(\Leftrightarrow\begin{cases}29-12m>0\\3m-1>0\\5>0\left(\text{đúng}\right)\end{cases}\)\(\Leftrightarrow\frac{1}{3}< m< \frac{29}{12}\)

 

 

 

 

15 tháng 8 2016

b và c tương tự

 

21 tháng 6 2017

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

Hàm số y = ax^2 (a khác 0). Phương trình bậc hai một ẩn

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)a. Tìm m để (1) có 2 nghiệm dương b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyênB2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)a. Tìm m để (1) có 2 nghiệm trái dấub. Tìm m để nghiệm này bằng bình phương nghiệm kiaB3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)a. cmr pt (1) luôn có 2 nghiệm phân...
Đọc tiếp

B1: Cho pt \(x^2-2\left(m-1\right)x+2m-5=0\)(1)

a. Tìm m để (1) có 2 nghiệm dương 

b. Gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm m để A=\(\left(\frac{x_1}{x_2}\right)^2+\left(\frac{x_2}{x_1}\right)^2\)nhận GT nguyên

B2: cho pt \(x^2-2\left(m-1\right)x+2m-3=0\)(1)

a. Tìm m để (1) có 2 nghiệm trái dấu

b. Tìm m để nghiệm này bằng bình phương nghiệm kia

B3: cho pt \(x^2-\left(3m+1\right)x+2m^2+m-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. Tìm m để A=\(x_1^2+x_2^2-3x_1x_2\)đạt GTLN

B4: Cho pt \(x^2+\left(2m+3\right)x+3m+11=0\). Tìm m để pt có 2 nghiệm \(x_1,x_2\ne0\)thỏa mãn \(|\frac{1}{x_1}-\frac{1}{x_2}|=\frac{1}{2}\)

B5: cho 2 đường thẳng \(\left(d_1\right):y=\left(m-1\right)x-m^2-m\)và \(\left(d_2\right):y=\left(m-2\right)x-m^2-2m+1\)

a. Xđ tọa độ giao điểm của \(d_1\)và \(d_2\)(điểm G)

b. cmr điểm G thuộc 1 đường thẳng cố định khi m thay đổi

B6: cho pt \(2x^2-4mx+2m^2-1=0\)(1)

a. cmr pt (1) luôn có 2 nghiệm phân biệt \(\forall m\)

b. tìm m để pt (1) có 2 nghiệm thỏa mãn \(2x_1^2+4mx_2+2m^2-1>0\)

B7: cho pt \(x^2-2mx-16+5m^2=0\)(1)

a. tìm m để (1) có nghiệm

b. gọi \(x_1,x_2\)là 2 nghiệm của (1). Tìm GTLN và GTNN của biểu thức A=\(x_1\left(5x_1+3x_2-17\right)+x_2\left(5x_2+3x_1-17\right)\)

0
17 tháng 5 2021

a,m=6    B,m=+_3.  C,M= 0;1

19 tháng 5 2023

A) 6m=6 b) m=3 c) m=0 m=1