Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-2\left(m+1\right)x^2+2m+1=0\)
\(\Leftrightarrow x^4-2mx^2-2x^2+2m+1=0\)
\(\Leftrightarrow x^2\left(x^2-1\right)-2m\left(x^2-1\right)-\left(x^2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x+1\right)\left(x^2-2m-1\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=\pm1\\x^2=2m+1\end{cases}}\)
Để pt có 4 nghiệm pb \(\Leftrightarrow\hept{\begin{cases}2m+1>0\\2m+1\ne1\end{cases}\Leftrightarrow\hept{\begin{cases}m>\frac{-1}{2}\\m\ne0\end{cases}}}\)
Vậy...
a: TH1: m=-1
Pt trở thành \(-3x-2\cdot\left(-1\right)-1=0\)
=>-3x+1=0
hay x=1/3(nhận)
Th2: m<>-1
\(\text{Δ}=\left(3m\right)^2-4\left(m+1\right)\left(-2m-1\right)\)
\(=9m^2+\left(4m+4\right)\left(2m+1\right)\)
\(=9m^2+8m^2+4m+8m+4\)
\(=17m^2+12m+4\)
Đặt \(17m^2+12m+4=0\)
\(\text{Δ}=12^2-4\cdot17\cdot4=-128< 0\)
Do đó: Phương trình vô nghiệm
b:
TH2: m<>1/2
\(\text{Δ}=\left(-m\right)^2+4\left(m+1\right)\left(2m-1\right)\)
\(=m^2+\left(4m+4\right)\left(2m-1\right)\)
\(=m^2+8m^2-4m+8m-4\)
\(=9m^2+4m-4\)
Đặt \(9m^2+4m-4=0\)
\(\text{Δ}=4^2-4\cdot9\cdot\left(-4\right)=160>0\)
Do đó: Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{-4-4\sqrt{10}}{18}=\dfrac{-2-\sqrt{10}}{9}\left(loại\right)\\m_2=\dfrac{\sqrt{10}-2}{9}\left(nhận\right)\end{matrix}\right.\)
Do đó: Phương trình (1) có hai nghiệm phân biệt
a)x2+5x+3m-1
- Pt có 2 nghiệm trái dấu khi
\(\Delta>0\Leftrightarrow m< \frac{29}{12}\).pt có 2 nghiệm phân biệt
\(x_{1,2}=\frac{5\pm\sqrt{29-12m}}{2}\)
- Pt có 2 nghiệm âm phân biệt khi
\(\begin{cases}\Delta\ge0\\p=1\end{cases}\)\(\Leftrightarrow\begin{cases}29-12m\ge0\\3m-1=1\end{cases}\)\(\Leftrightarrow m=\frac{2}{3}\left(tm\right)\)
- Pt có 2 nghiệm dương phân biệt khi
\(\begin{cases}\Delta>0\\p=\frac{c}{a}>0\\S=\frac{b}{a}>0\end{cases}\)\(\Leftrightarrow\begin{cases}29-12m>0\\3m-1>0\\5>0\left(\text{đúng}\right)\end{cases}\)\(\Leftrightarrow\frac{1}{3}< m< \frac{29}{12}\)
a/ \(\left\{{}\begin{matrix}m\ne1\\\Delta'=0-\left(m-1\right)\left(-2m+1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left(m-1\right)\left(2m-1\right)>0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}m\ne1\\\left[{}\begin{matrix}m>1\\m< \frac{1}{2}\end{matrix}\right.\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}m>1\\m< \frac{1}{2}\end{matrix}\right.\)
b/ \(\Delta=\left(2m+1\right)^2-8m>0\)
\(\Leftrightarrow\left(2m-1\right)^2>0\Rightarrow m\ne\frac{1}{2}\)
c/ \(\Delta=m^2-4\left(m-1\right)=\left(m-2\right)^2>0\Rightarrow m\ne2\)