Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
â ) hàm số y = ( 2m - 1 )x + m + 2 đồng biến <=> a > 0
<=> 2m - 1 > 0
<=> 2m > 1
<=> m > \(\frac{1}{2}\)
Vay : khi m > \(\frac{1}{2}\) thì hàm số trên đồng biến
Bài 1:
a/ Bạn tự vẽ
b/ Phương trình hoành độ giao điểm:
\(\frac{1}{2}x^2=\left(m-1\right)x+4\Leftrightarrow x^2-2\left(m-1\right)x-8=0\) (1)
Do \(ac=-8< 0\Rightarrow\left(1\right)\) luôn có 2 nghiệm pb hay d luôn cắt (P) tại 2 điểm phân biệt
Theo định lý Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-8\end{matrix}\right.\)
\(\frac{1}{x_1}+\frac{1}{x_2}=1\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=1\Leftrightarrow x_1+x_2=x_1x_2\)
\(\Leftrightarrow2\left(m-1\right)=-8\Leftrightarrow m-1=-4\Rightarrow m=-3\)
Câu 2:
b/ Phương trình hoành độ giao điểm:
\(x^2=5x-2m\Leftrightarrow x^2-5x+2m=0\)
\(\Delta=25-8m\ge0\Rightarrow25\ge8m\Rightarrow m\le\frac{25}{8}\) (2)
Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=5\\x_1x_2=2m\end{matrix}\right.\)
Để biểu thức đề bài xác định \(\Leftrightarrow x_1x_2\ne0\Rightarrow2m\ne0\Rightarrow m\ne0\)
Ta có: \(\frac{1}{x_1}+\frac{1}{x_2}=\frac{5}{2}\Leftrightarrow\frac{x_1+x_2}{x_1x_2}=\frac{5}{2}\Leftrightarrow2\left(x_1+x_2\right)=5x_1x_2\)
\(\Leftrightarrow2.5=5.2m\Rightarrow10=10m\Rightarrow m=1\) (thỏa mãn điều kiện (2))
ở câu 1 b tại sao ở pt hoành độ giao điểm lại suy ra được \(x^2-2\left(m-1\right)x-8=0\)vậy cậu ?
Lời giải:
PT hoành độ giao điểm:
$\frac{3}{4}x^2+\frac{3}{2}x-2m=0$
$\Leftrightarrow 3x^2-6x+8m=0(*)$
Để $(d)$ và $(P)$ cắt nhau tại 2 điểm phân biệt nằm bên phải trục tung thì $(*)$ phải có 2 nghiệm phân biệt dương.
\(\Leftrightarrow \left\{\begin{matrix} \Delta'=9-24m>0\\ x_1+x_2=2>0\\ x_1x_2=\frac{8m}{3}>0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} m< \frac{9}{24}\\ m>0\end{matrix}\right.\Leftrightarrow m\in (0; \frac{9}{24})\)
a)Để ĐTHS song song với đường thẳng thì\(\hept{\begin{cases}5-2m=\frac{-1}{3}\\1-m\ne-2\end{cases}}\Rightarrow\)\(m=\frac{8}{3}\)
1) Hai đường thẳng cắt nhau tại một điểm trên trục tung khi \(\int^{a\ne a^,}_{b=b^,}\Rightarrow\int^{2\ne3}_{5m-4=-2m+1}\)
=> 7m=5 => m= 5/7
2) y=5x+1-2m : Với y=0 =>5x +1-2m =0 => x =(2m-1)/5
y =x - m -4 : Với y =0 => x= m + 4
Để hai đường thẳng cắt nhau tại một điểm trên trục hoành thì:\(\int^{1\ne5}_{\frac{2m-1}{5}=m+4}\)
=> 2m-1=5m+20 => m=-7
a) (d) cắt (d') khi và chỉ khi 2m+1 \(\ne\) m-1 suy ra m \(\ne\) -2 .Vậy m \(\ne\) -2 thì (d) cắt (d').
b) (d) song song với (d') khi và chỉ khi 2m+1=m-1 và -(2m+3) \(\ne\) m suy ra m=-2 và m \(\ne\) -1.Vậy m=-2 thì (d) song song với (d').