\([1;+\infty)\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
22 tháng 2 2020

Với \(x\ge1\Rightarrow2x-1>0\)

BPT tương đương: \(m\ge\frac{2x+1}{2x-1}=1+\frac{2}{2x-1}\)

Để BPT có tập nghiệm \(x\ge1\Rightarrow m=\max\limits_{x\ge1}\left(1+\frac{2}{2x-1}\right)=3\)

Vậy \(m=3\)

AH
Akai Haruma
Giáo viên
29 tháng 4 2019

Đề thiếu dữ kiện.

30 tháng 4 2019

\(x^2-2m-x\le0\)

NV
26 tháng 2 2021

1.

\(\Leftrightarrow\left(m^2+4\right)x\ge2-m\)

Do \(m^2+4>0\) ; \(\forall m\)

\(\Rightarrow x\ge\dfrac{2-m}{m^2+4}\)

2.

\(\Leftrightarrow2mx-2x\ge m-1\Leftrightarrow2\left(m-1\right)x\ge m-1\)

- Với \(m>1\Rightarrow m-1>0\)

\(\Rightarrow x\ge\dfrac{m-1}{2\left(m-1\right)}\Leftrightarrow x\ge\dfrac{1}{2}\) \(\Rightarrow D=[\dfrac{1}{2};+\infty)\)

- Với \(m< 1\Rightarrow m-1< 0\Rightarrow x\le\dfrac{m-1}{2\left(m-1\right)}\Leftrightarrow x\le\dfrac{1}{2}\) \(\Rightarrow D=(-\infty;\dfrac{1}{2}]\)

- Với \(m=1\Leftrightarrow0\ge0\Rightarrow D=R\)

Quan sát 3 TH ta thấy không tồn tại m để tập nghiệm của BPT là \([1;+\infty)\)

30 tháng 7 2016

lập đen ta ra r tính đen ta >=0 là dc