Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
c) Ta có: \(\text{Δ}=\left[-2\left(m+1\right)\right]^2-4\cdot1\cdot\left(2m+1\right)\)
\(=\left(-2m-2\right)^2-4\left(2m+1\right)\)
\(=4m^2+8m+4-8m-4\)
\(=4m^2\ge0\forall m\)
Do đó, phương trình luôn có nghiệm
Áp dụng hệ thức Vi-et, ta có:
\(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m+1\right)}{1}=2m+2\\x_1\cdot x_2=2m+1\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m+2\\x_1-2x_2=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x_2=2m-1\\x_1=2m+2+x_2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=\dfrac{2m-1}{3}\\x_1=2m+3+\dfrac{2m-1}{3}=\dfrac{8m+8}{3}\end{matrix}\right.\)
Ta có: \(x_1\cdot x_2=2m+1\)
\(\Leftrightarrow\dfrac{2m-1}{3}\cdot\dfrac{8m+8}{3}=2m+1\)
\(\Leftrightarrow\left(2m-1\right)\left(8m+8\right)=9\left(2m+1\right)\)
\(\Leftrightarrow16m^2+16m-8m-8-18m-9=0\)
\(\Leftrightarrow16m^2-10m-17=0\)
\(\text{Δ}=\left(-10\right)^2-4\cdot16\cdot\left(-17\right)=1188\)
Vì Δ>0 nên phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}m_1=\dfrac{10-6\sqrt{33}}{32}\\m_2=\dfrac{10+6\sqrt{33}}{32}\end{matrix}\right.\)
\(a.\Leftrightarrow mx^2+2mx-x+m+2=0\)
\(\Leftrightarrow mx\left(x+2\right)+\left(m+2\right)-x=0\)
\(\Leftrightarrow\left(m+2\right)\left(mx+1\right)-x=0\)
\(\Rightarrow\left\{{}\begin{matrix}m=\left(0+x\right):\left(mx+1\right)-2\\m=[\left(0+x\right):\left(m+2\right)-1]:x\end{matrix}\right.\)
bạn đăng tách ra cho mn giúp nhé
a, Để pt có 2 nghiệm pb
\(\Delta'=1-m\ge0\Leftrightarrow m\le1\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=-2\left(1\right)\\x_1x_2=m\left(2\right)\end{matrix}\right.\)
\(x_1-3x_2=0\)(3)
Từ (1) ; (3) ta có hệ \(\left\{{}\begin{matrix}x_1+x_2=-2\\x_1-3x_2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}4x_1=-2\\x_2=-2-x_1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x_1=-\dfrac{1}{2}\\x_2=-\dfrac{3}{2}\end{matrix}\right.\)
Thay vào (2) ta được \(m=\left(-\dfrac{1}{2}\right)\left(-\dfrac{3}{2}\right)=\dfrac{3}{4}\)
\(b,\Delta=\left(m+5\right)^2-4\left(-m+6\right)\ge0\Leftrightarrow\left[{}\begin{matrix}m\le-7-4\sqrt{3}\\m\ge-7+4\sqrt{3}\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=m+5\\2x1+3x2=13\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x1+2x2=2m+10\\2x1+3x2=13\end{matrix}\right.\)\(\)
\(\Rightarrow x2=13-2m-10=3-2m\Rightarrow x1=m+5-x2=m+5-3+2m=3m+2\)
\(x1x2=6-m\Rightarrow\left(3-2m\right)\left(3m+2\right)=6-m\Leftrightarrow\left[{}\begin{matrix}m=0\left(tm\right)\\m=1\left(tm\right)\end{matrix}\right.\)
\(c,\Delta'=\left(m+1\right)^2-\left(m^2-2m+29\right)\ge0\Leftrightarrow m\ge7\)
\(\Rightarrow\left\{{}\begin{matrix}x1+x2=2m+2\\x1=2x2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x2=\dfrac{2m+2}{3}\\x1=\dfrac{2\left(2m+2\right)}{3}\end{matrix}\right.\)
\(\Rightarrow x1.x2=\dfrac{\left(2m+2\right).2\left(2m+2\right)}{9}=m^2-2m+29\Leftrightarrow\left[{}\begin{matrix}m=11\left(tm\right)\\m=23\left(tm\right)\end{matrix}\right.\)
\(\Delta=\left(2m+1\right)^2-4\left(m^2+m-2\right)=9>0;\forall m\)
Phương trình luôn có 2 nghiệm pb với mọi m
Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2m+1\\x_1x_2=m^2+m-2\end{matrix}\right.\)
\(x_1\left(x_1-2x_2\right)+x_2\left(x_2-2x_1\right)=9\)
\(\Leftrightarrow x_1^2+x_2^2-4x_1x_2=9\)
\(\Leftrightarrow\left(x_1+x_2\right)^2-6x_1x_2=9\)
\(\Leftrightarrow\left(2m+1\right)^2-6\left(m^2+m-4\right)=9\)
\(\Leftrightarrow2m^2+2m-4=0\)
\(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
a: Th1: m=0
=>-2x-1=0
=>x=-1/2
=>NHận
TH2: m<>0
Δ=(-2)^2-4m(m-1)=-4m^2+4m+4
Để phương trình có nghiệm duy nhất thì -4m^2+4m+4=0
=>\(m=\dfrac{1\pm\sqrt{5}}{2}\)
b: Để PT có hai nghiệm phân biệt thì -4m^2+4m+4>0
=>\(\dfrac{1-\sqrt{5}}{2}< m< \dfrac{1+\sqrt{5}}{2}\)
3:
\(\Delta=\left(2m-1\right)^2-4\left(-2m-11\right)\)
=4m^2-4m+1+8m+44
=4m^2+4m+45
=(2m+1)^2+44>=44>0
=>Phương trình luôn có hai nghiệm pb
|x1-x2|<=4
=>\(\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}< =4\)
=>\(\sqrt{\left(2m-1\right)^2-4\left(-2m-11\right)}< =4\)
=>\(\sqrt{4m^2-4m+1+8m+44}< =4\)
=>0<=4m^2+4m+45<=16
=>4m^2+4m+29<=0
=>(2m+1)^2+28<=0(vô lý)
a. Phương trình x2−2(m+1)x+m2−4m+3=0x2−2(m+1)x+m2−4m+3=0 có hai nghiệm phân biệt khi và chỉ khi
Δ′≥0Δ′≥0 ⇔(m+1)2−(m2−4m+3)≥0⇔(m+1)2−(m2−4m+3)≥0 ⇔6m−2≥0⇔6m−2≥0 ⇔m≥13⇔m≥13
Vậy khi m≥13m≥13 thì phương trình đã cho có nghiệm
b. Phương trình đã cho có hai nghiệm cùng dấu khi và chỉ khi
{Δ′>0P>0{Δ′>0P>0 ⇔{(m+1)2−(m2−4m+3)>0x1x2=m2−4m+3>0⇔{(m+1)2−(m2−4m+3)>0x1x2=m2−4m+3>0 ⇔⎧⎩⎨m>13m<1∨m>3⇔{m>13m<1∨m>3 ⇔⎡⎣13<m<1m>3⇔[13<m<1m>3
Vậy phương trình trên có hai nghiệm cùng dấu khi và chỉ khi 13<m<113<m<1 hoặc m>3m>3
c. Phương trình đã cho có hai nghiệm trái dấu khi và chỉ khi P<0P<0⇔m2−4m+3<0⇔m2−4m+3<0⇔1<m<3⇔1<m<3
d. Phương trình có hai nghiệm phân biệt âm khi và chỉ khi
⎧⎩⎨⎪⎪Δ′>0S<0P>0{Δ′>0S<0P>0⇔⎧⎩⎨⎪⎪(m+1)2−(m2−4m+3)>02(m+1)<0m2−4m+3>0⇔{(m+1)2−(m2−4m+3)>02(m+1)<0m2−4m+3>0 ⇔⎧⎩⎨⎪⎪⎪⎪m>13m<−1m<1∨m>3⇔{m>13m<−1m<1∨m>3⇔⇔ vô nghiệm
Vậy không tồn tại giá trị mm để phương trình bậc hai đã cho có hai nghiệm âm
e. Phương trình bậc hai đã cho có hai nghiệm dương khi và chỉ khi
⎧⎩⎨⎪⎪Δ′>0S>0P>0{Δ′>0S>0P>0⇔⎧⎩⎨⎪⎪(m+1)2−(m2−4m+3)>02(m+1)>0m2−4m+3>0⇔{(m+1)2−(m2−4m+3)>02(m+1)>0m2−4m+3>0⇔⎧⎩⎨⎪⎪⎪⎪m>13m>−1m<1∨m>3⇔{m>13m>−1m<1∨m>3⇔⎡⎣13<m<1m>3⇔[13<m<1m>3
Vậy phương trình trên có hai nghiệm cùng dương khi và chỉ khi 13<m<113<m<1 hoặc m>3m>3
Bài toán 2. Cho phương trình 2x2−4x−3+m=02x2−4x−3+m=0 với xx là ẩn số và mm là tham số
Hướng dẫn giải
a. Phương trình 2x2−4x−3+m=02x2−4x−3+m=0 có 2 nghiệm phân biệt x1,x2x1,x2khi và chỉ khi
Δ′>0Δ′>0 ⇔b2−ac>0⇔b2−ac>0 ⇔4−2(−3+m)>0⇔4−2(−3+m)>0 ⇔5−m>0⇔m<5⇔5−m>0⇔m<5
Vậy với m<5m<5 thì phương trình 2x2−4x−3+m=02x2−4x−3+m=0 có 2 nghiệm phân biệt
b. Xét phương trình 2x2−4x−3+m=02x2−4x−3+m=0 khi m<5m<5
Theo định lý Viet ta có ⎧⎩⎨S=x1+x2=2P=x1x2=−3+m2{S=x1+x2=2P=x1x2=−3+m2
Ta có: x21+x22=8x12+x22=8⇔(x1+x2)2−2x1x2=8⇔(x1+x2)2−2x1x2=8 ⇔4−(−3+m)=8⇔4−(−3+m)=8 ⇔m=−1⇔m=−1 (nhận)
Vậy với m=−1m=−1 thì x21+x22=8x12+x22=8
Bài toán 3. Cho phương trình x2+(m−3)x−3m=0x2+(m−3)x−3m=0 với mm là tham số và xx là ẩn số
Hướng dẫn giải
a. Ta có: Δ=(m−3)2+12m=m2+6m+9=(m+3)2≥0∀mΔ=(m−3)2+12m=m2+6m+9=(m+3)2≥0∀m
Suy ra phương trình luôn có nghiệm với mọi mm(đpcm)
Theo định lý Viet ta có {S=x1+x2=3−mP=x1x2=−3m{S=x1+x2=3−mP=x1x2=−3m
Ta có x21+x22−x1x2=9x12+x22−x1x2=9
⇔(x1+x2)2−3x1x2=9⇔(x1+x2)2−3x1x2=9
⇔(3−m)2+9m=9⇔(3−m)2+9m=9
⇔m2+3m=0⇔m2+3m=0
⇔m(m+3)=0⇔m(m+3)=0
⇔[m=0m=−3⇔[m=0m=−3
Nhận xét.
Với m=0m=0 thì Δ>0Δ>0, suy ra phương trình x2+(m−3)x−3m=0x2+(m−3)x−3m=0có hai nghiệm phân biệt .
Với m=−3m=−3 thì Δ=0Δ=0, suy ra phương trình x2+(m−3)x−3m=0x2+(m−3)x−3m=0có hai nghiệm kép.
Bài toán 4. Cho phương trình x2−2mx+m−2=0x2−2mx+m−2=0 với mm là tham số và xx là ẩn số
Hướng dẫn giải
a.Ta có Δ=m2−(m−2)Δ=m2−(m−2) =m2−m+14+74=m2−m+14+74 =(m−12)2+74≥74>0∀m=(m−12)2+74≥74>0∀m
Suy ra phương trình x2−2mx+m−2=0x2−2mx+m−2=0 có hai nghiệm phân biệt với mọi mm(đpcm).
b. Theo định lý Viet ta có: {S=x1+x2=2mP=x1x2=m−2{S=x1+x2=2mP=x1x2=m−2
M=−48x21+x22−6x1x2M=−48x12+x22−6x1x2 =−48(x1+x2)2−8x1x2=−484m2−8(m−2)=−48(x1+x2)2−8x1x2=−484m2−8(m−2) latex=−48(2m−2)2+12latex=−48(2m−2)2+12
Ta có: (2m−2)2+12≥12∀m(2m−2)2+12≥12∀m
⇔1(2m−2)2+12≤112∀m⇔1(2m−2)2+12≤112∀m
⇔−48(2m−2)2+12≥−4∀m⇔−48(2m−2)2+12≥−4∀m
Suy ra Max(M)=−4Max(M)=−4. Dấu ”=””=” xảy ra khi và chỉ khi (2m−2)=0⇔m=1(2m−2)=0⇔m=1
Bài toán 5. Cho phương trình x2−mx−1=0x2−mx−1=0 với mm là tham số và xx là ẩn số
Hướng dẫn giải
a. Xét phương trình x2−mx−1=0x2−mx−1=0 (mm là tham số và xx là ẩn số) ta có: P=x1x2=−1<0∀mP=x1x2=−1<0∀m
Suy ra phương trình luôn có hai nghiệm trái dấu (đpcm)
b. M=x21+x1−1x1−x22+x2−1x2M=x12+x1−1x1−x22+x2−1x2
M=x1+1−1x1−x2−1+1x2M=x1+1−1x1−x2−1+1x2
M=(x1−x2)+x1−x2x1x2M=(x1−x2)+x1−x2x1x2
M=(x1−x2)(1+1x1x2)M=(x1−x2)(1+1x1x2)
Theo định lý Viet ta có: {S=x1+x2=mP=x1x2=−1{S=x1+x2=mP=x1x2=−1
Ta có: (x1−x2)2=x21+x22−2x1x2=(x1+x2)2−4x1x2(x1−x2)2=x12+x22−2x1x2=(x1+x2)2−4x1x2 =m2+4=m2+4 M2=(x1−x2)2(1+1x1x2)2=(m2+4)×0=0M2=(x1−x2)2(1+1x1x2)2=(m2+4)×0=0
Vậy M=0
Từ (2) ta thay a=-2x2-x+5 vào (1) ta được
4x3+3x2-7x+6=(x+2)(4x2-5x+3)=0
=> x=-2 => a=1
Thử lại với a=-1 thì (1) có nghiệm x1=3; x2=-2; (2) có nghiệm x1=\(\frac{3}{2}\); x2=-2(tm)
Vậy a=-1 và x=-2 là nghiệm chung