Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, M(\(x\) )+N(\(x\)) = 3\(x^4\) - 2\(x\)3 + 5\(x^2\) - \(4x\)+ 1 + ( -3\(x^4\) + 2\(x^3\)- 3\(x^2\)+ 7\(x\) + 5)
M(\(x\)) + N(\(x\)) = ( 3\(x^4\)- 3\(x^4\))+( -2\(x^3\) + 2\(x^3\))+(5\(x^2\) - 3\(x^2\))+( 7\(x-4x\)) +(1+5)
M(\(x\)) + N(\(x\)) = 0 + 0 + 2\(x^2\) + 3\(x\) + 6
M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
b, P(\(x\)) = M(\(x\)) + N(\(x\)) = 2\(x^2\) + 3\(x\) + 6
P(-2) = 2.(-2)2 + 3.(-2) + 6 = 8 - 6 + 6 = 8
Sửa đa thức M(x) = 3x4 - 2x3 + 5x2 - 4x + 1
\(P\left(x\right)=M\left(x\right)+N\left(x\right)\)
\(=3x^4-2x^3+5x^2-4x+1-3x^4+2x^3-3x^2+7x+5\)
\(=2x^2+3x+6\)
b, Tại x = -x
< = > 2x = 0 <=> x = 0 thì giá trị của biểu thức P ( x ) = 6
\(M=3x^6y+\frac{1}{2}x^4y^3-4y^7-4x^4y^3+11-5x^6y+2y^7-2\)
\(M=\left(3x^6y-5x^6y\right)+\left(\frac{1}{2}x^4y^3-4x^4y^3\right)+\left(-4y^7+2y^7\right)+\left(11-2\right)\)
\(M=-2x^6y-\frac{7}{2}x^4y^3-2y^7+9\)
Xét bậc của từng hạng tử
-2x6y có bậc là 7
-7/2x4y3 có bậc là 7
-2y7 có bậc là 7
=> Bậc của M = 7
Thay x = 1 , y = -1 vào M ta được :
\(M=-2\cdot1^6\cdot\left(-1\right)-\frac{7}{2}\cdot1^4\cdot\left(-1\right)^3-2\cdot\left(-1\right)^7+9\)
\(M=-2\cdot1\cdot\left(-1\right)-\frac{7}{2}\cdot1\cdot\left(-1\right)-2\cdot\left(-1\right)+9\)
\(M=2+\frac{7}{2}+2+9\)
\(M=\frac{33}{2}\)
Vậy giá trị của M = 33/2 khi x = 1 , y = -1
a) tự tính nhé dễ mà
b) M + N = 5xyz - 5x2 + 8xy + 5 + 3x2 + 2xyz - 8xy - 7 + y2
= 5xyz + 2xyz + (-5x2 + 3x2) + 8xy - 8xy + y2 + 5 - 7
= 7xyz - 2x2 + y2 - 2
M - N và N - M làm tương tự nhé
a: \(M=x^2y^3+xy^2+2x^3+2.25-2x^2y^3+\dfrac{1}{2}xy^2-3x^2+\dfrac{1}{3}\)
\(=-x^2y^3+\dfrac{3}{2}xy^2-3x^2+2x^3+\dfrac{31}{12}\)
b: \(M=6x^3y^3-5x^2y+x^4y-1.5-\dfrac{2}{5}+5x^3y^3-x^4y+7x^2y\)
\(=11x^3y^3+2x^2y-\dfrac{19}{10}\)
a: M=P-Q
=5x^2-7y^2+y-1-x^2+2y^2
=4x^2-5y^2+y-1
b: Khi x=1/2 và y=-1/5 thì
M=4*1/4-5*1/25-1/5-1
=1-1-1/5-1/5=-2/5
Thay x=-2 và y=1/3 vào M, ta được:
\(3\cdot4-5\cdot\dfrac{1}{3}+m=17\)
=>m+31/3=17
hay m=20/3