Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(\left|a+b\right|< \left|a-b\right|\)
\(\Leftrightarrow\hept{\begin{cases}0< \left|a+b\right|\\0< \left|a-b\right|\end{cases}}\Leftrightarrow\hept{\begin{cases}0< a+b\\0< a-b\end{cases}}\Leftrightarrow\hept{\begin{cases}-a< b\\b< a\end{cases}}\Rightarrow\hept{\begin{cases}a>b\\b< a\end{cases}}\Rightarrow a>b\)
Xét các trường hợp:
1. a, b, a’, b’ ≠ 0
Ta có:
Hệ phương trình vô nghiệm khi hai đường thẳng song song nhau. Nghĩa là hai đường thẳng có hệ số góc bằng nhau và tung độ gốc khác nhau:
Áp dụng:
Hệ hai phương trình bậc nhất hai ẩn vô nghiệm:
Vì nên hệ phương trình trên vô nghiệm
Xét các trường hợp:
1. a, b, a’, b’ ≠ 0
Ta có:
Hệ phương trình có vô số nghiệm khi hai đường thẳng trùng nhau. Nghĩa là hai đường thẳng có hệ số góc và tung độ gốc bằng nhau:
*a = 0, a’ ≠ 0
Vì hai đường thẳng luôn luôn cắt trục hoành còn đường thẳng y = c/b song song hoặc trùng với trục hoành nên chúng luôn luôn cắt nhau.
Vậy hệ phương trình chỉ có một nghiệm duy nhất.
*a = a’ = 0
Hệ có vô số nghiệm khi hai đường thẳng trùng nhau, nghĩa là:
Hệ vô nghiệm khi hai đường thẳng song song nhau, nghĩa là:
*b = 0, b’ ≠ 0
Vì hai đường thẳng luôn luôn cắt trục tung còn đường thẳng x = c/a song song hoặc trùng với trục tung nên chúng luôn luôn cắt nhau.
Vậy hệ phương trình chỉ có một nghiệm duy nhất.
*b = b’ = 0
Hệ có vô số nghiệm khi hai đường thẳng trùng nhau, nghĩa là:
Hệ vô nghiệm khi hai đường thẳng song song nhau, nghĩa là:
Áp dụng:
Hệ hai phương trình bậc nhất hai ẩn có vô số nghiệm:
Vì nên hệ phương trình có vô số nghiệm
Vì |a+b| \(\ge\)0, |a-b|\(\ge\)0, nên |a+b|>|a-b|
\(\Leftrightarrow\)a2+2ab+b2 \(\ge\)a2-2ab+b2
\(\Leftrightarrow\)4ab>0
\(\Leftrightarrow\)ab>0
Vậy a và b là hai số cùng dấu.