Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Để hàm số trên là hàm số đồng biến khi \(1-3m>0\Leftrightarrow m< \frac{1}{3}\)
Để hàm số trên là hàm số nghịch biến khi \(1-3m< 0\Leftrightarrow m>\frac{1}{3}\)
Ở định nghĩa trong SGK
Cho hàm số y=ax+b
Đồng biến khi a>0
Nghich biến khi a<0
a) Đồng biến
k^2-5k-6 >0 <=> k<-1 hoặc k>6
b) Nghịch biến
2k^2+3k-2 <0 <=> -2<k<1/2
Bài 1:
a: Để (d) là hàm số bậc nhất thì 2m-2<>0
hay m<>1
b: Để (d) là hàm số đồng biến thì 2m-2>0
hay m>1
c: Hàm số (d') đồng biến vì a=4>0
Bài 2:
b: Tọa độ giao điểm là:
\(\left\{{}\begin{matrix}-x+6=3x-6\\y=-x+6\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=3\end{matrix}\right.\)
Thay x=1 và y=4 vào y=kx+1, ta được:
k+1=4
=>k=3
=>y=3x+1
=>Hàm số đồng biến
cậu xem đúng thì k y' = x^2 -(2m+1)x+3m+2. Để hs nghịch biến trong 1 khoản có độ dài > 1 thì y'=0 phải có 2 nghiệm phân biệt x1, x2 sao cho |x2-x1| >1 (lúc này thì y' =<0 trong khoản 2 nghiệm [x1, x2] tức là y nghịch biến trong đoạn [x1,x2])
<=> có hệ
(1) y'=0 có 2 nghiệm x1, x2
(2) |x2-x1| > 1 <=> (x2-x1)^2 -1>0 <=> (x1+x2)^2 - 4.x1.x2 -1 >0
mk mới hok lớp 8 nên cái tay bó tay!!! ^^
346456454574575675756768797835153453443457657656565
Bài 1:
a: Để hàm số đồng biến khi x>0 thì m-1>0
hay m>1
b: Để hàm số nghịch biến khi x>0 thì 3-m<0
=>m>3
c: Để hàm số nghịch biến khi x>0 thì m(m-1)<0
hay 0<m<1
a, đồng biến khi m - 1 > 0 <=> m > 1
b, nghịch biến khi 3 - m < 0 <=> m > 3
c, nghịch biến khi m^2 - m < 0 <=> m(m-1) < 0
Ta có m - 1 < m
\(\left\{{}\begin{matrix}m-1< 0\\m>0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< 1\\m>0\end{matrix}\right.\Leftrightarrow0< m< 1\)
m=2. Khi đó hàm số trở thành: f(x)= -4x-3
Khi đó hàm f(x) luôn nghịch biến vì hệ số a=-4<0
đb <=> \(k^2-4>0\)
\(\Leftrightarrow k^2>4\)
\(\Leftrightarrow\orbr{\begin{cases}k>2\\k>-2\end{cases}}\)
\(\Leftrightarrow k>2\)
nb <=> \(k^2-4< 0\)
\(\Leftrightarrow k^2< 4\)
\(\Leftrightarrow\orbr{\begin{cases}k< 2\\k< -2\end{cases}}\)
\(\Leftrightarrow k< -2\)
vậy .......