Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\overrightarrow{v}=\left(3;-m\right)\)
Hai vecto đã cho cùng phương khi và chỉ khi:
\(\dfrac{3}{-2}=\dfrac{-m}{1}\Leftrightarrow m=\dfrac{3}{2}\)
- Với \(m=0\) ko thỏa mãn
- Với \(m\ne0\) hai vecto cùng phương khi:
\(\dfrac{m^2+m-2}{m}=\dfrac{4}{2}\Leftrightarrow m^2+m-2=2m\)
\(\Rightarrow m^2-3m-2=0\Rightarrow m=\dfrac{3\pm\sqrt{17}}{2}\)
Từ giả thiết suy ra u → = 1 2 ; − 5 , v → = k ; − 4 .
Để u → ⊥ v → ⇔ u → . v → = 0 ⇔ 1 2 k + − 5 − 4 = 0 ⇔ k = − 40 .
Chọn C.
Từ giả thiết suy ra u → = 1 2 ; − 5 , v → = k ; − 4 .
Yêu cầu bài toán: u → ⊥ v → ⇔ 1 2 k + − 5 − 4 = 0 ⇔ k = − 40 .
Chọn C.
\(\overrightarrow{u}.\overrightarrow{v}=2.1+a.\left(-1\right)=2-a\)
\(\Rightarrow2-a=1\Rightarrow a=1\)
Để 2 vecto đã cho cùng phương khi tồn tại số k sao cho:
u → = k . v → ⇔ 1 2 = k . m − 5 = k .4 ⇔ m = − 2 5 k = − 5 4
Đáp án C
Tham khảo:
Kí hiệu O, E, F là các điểm như trên hình vẽ.
Dễ thấy: tứ giác OEMF là hình bình hành nên \(\overrightarrow {OE} + \overrightarrow {OF} = \overrightarrow {OM} \) hay \(\overrightarrow v + \overrightarrow u = \overrightarrow {OM} \)
Và \(\overrightarrow {OC} = 3.\overrightarrow {OM} \Rightarrow 3\left( {\overrightarrow v + \overrightarrow u } \right) = 3.\overrightarrow {OM} = \overrightarrow {OC} \)
Mặt khác: \(\overrightarrow {OA} = 3.\overrightarrow {OF} = 3\;\overrightarrow u ;\;\overrightarrow {OB} = 3.\overrightarrow {OE} = 3\;\overrightarrow v \)
Và \(\overrightarrow {OB} + \overrightarrow {OA} = \overrightarrow {OC} \) hay \(3\;\overrightarrow v + 3\;\overrightarrow u = \overrightarrow {OC} \)
\( \Rightarrow 3\left( {\overrightarrow v + \overrightarrow u } \right) = 3\;\overrightarrow v + 3\;\overrightarrow u \)
\(u+v=1\Rightarrow v=1-u\)
Thế vào \(uv=-42\Rightarrow u\left(1-u\right)=-42\)
\(\Rightarrow u^2-u-42=0\Rightarrow\left[{}\begin{matrix}u=7\Rightarrow v=-6\\u=-6\Rightarrow v=7>u\left(loại\right)\end{matrix}\right.\)