K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2018

a.Để hàm số đồng biến trên R thì:

(2-3m)>0

<=>m<2/3

b.Hàm số đi qua điểm A(1;0)

Thay x=1,y=0 vào (d) , ta được: 0=(2-3m)1+m^2 =>m=1

Vậy Khi m=1 thì hàm số đi qua điểm A(1;0)

c.Để (d) vuông góc với (d') thì:

(2-3m).1=-1=>m=1

d.Để (d)//(d') thì:

(2-3m)=2=>m=0

5 tháng 2 2023

Hàm số đạt min trên R <=> a > 0 

ymin = 2 <=> \(\dfrac{-\Delta}{4a}=2\Leftrightarrow\dfrac{4ac-b^2}{4a}=2\Leftrightarrow b^2-4ac+8a=0\)

\(\Leftrightarrow b^2=4a.\left(c-2\right)\) (1) 

Lại có (p) cắt (d) : y = -2x + 6 tại hoành độ là 2;10

=> Đi qua điểm A(2;2) ; B(10;-14)

hay ta có 2 = a.22 + b.2 + c 

<=> 4a + 2b + c = 2

<=> c - 2 = -4a - 2b (2)

Tương tự : -14 = a.102 + b.10 + c

<=> 100a + 10b + c = -14  (3)

Thay (2) vào (1) ta được \(b^2=4a.\left(-4a-2b\right)\Leftrightarrow\left(b+4a\right)^2=0\Leftrightarrow b=-4a\)

Khi đó (3) <=> 60a + c = -14 (4) 

(2) <=> c - 4a = 2 (5) 

Từ (5) ; (4) => \(\left\{{}\begin{matrix}a=-\dfrac{1}{4}\\c=1\end{matrix}\right.\) 

\(b=-4a=\left(-4\right).\dfrac{-1}{4}=1\)

Vậy \(y=-\dfrac{1}{4}x^2+x+1\) (loại) do a > 0

=> Không có hàm số nào thỏa mãn 

23 tháng 11 2021

A nhé

hihhihihiihihihhiihhiihihihih

16 tháng 10 2019

đề có sai không bạn,tại một trong hai thì phải có một cái không âm,một cái âm trên cái khoảng chứ phải hôn:<

 còn chỉ tìm gtnn hay gtln thì chỉ tìm x = -b/2a rồi thế vào được nha

NV
27 tháng 10 2020

Do (P) và (d) đều đi qua điểm (1;3) nên:

\(\left\{{}\begin{matrix}a+b+c=3\\a+b=3\end{matrix}\right.\) \(\Rightarrow c=0\)

Từ \(a+b=3\Rightarrow b=3-a\)

Vậy pt (d) và (P) lần lượt có dạng: \(\left\{{}\begin{matrix}y=ax^2+\left(3-a\right)x\\y=ax+3-a\end{matrix}\right.\)

Pt hoành độ giao điểm (P) và (d):

\(ax^2+\left(3-a\right)x=ax+3-a\)

\(\Leftrightarrow ax^2+\left(3-2a\right)x+a-3=0\) (1)

(P) tiếp xúc (d) khi và chỉ khi (1) có nghiệm kép

\(\Leftrightarrow\Delta=\left(3-2a\right)^2-4a\left(a-3\right)=0\)

\(\Leftrightarrow9=0\) (vô lý)

Vậy ko tồn tại a;b;c thỏa mãn yêu cầu đề bài