K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 12 2016

vì p là số nguyên tố nên p thuộc{2;3;5;7;11;...}

Nếu p=2 thì p+2=2+2=4 _ loại(vì là hs)

Nếu p=3 thì p+6=3+6=9 _ loại(vì là hs)

Nếu p=5 thì p+2=5+2=7 ; p+6=5+6=11 ; p+8=5+8=13 ; p+14=5+14=19 _ thỏa mãn(đều là số n tố)

Nếu p >= 5 mà p là số n tố =>p chia 5 dư 1;2;3;4

Nếu p chia 5 dư 1 đặt p=5k+1 khi đó p+14=(5k+1)+14=5k+15=5(k+3)_là số chia hết cho 5 mà p+14 > 5 => p+14 là hs loại

(bạn thử với từng trường hợp chia 5 dư 2;3;4 còn lại chỉ cần thay số vào phần trên và ta tìm được 1 giá trị thỏa mãn là p=5)

Vậy p=5

20 tháng 12 2016

- Do p+2; p+6; p+8, p+14 là số tự nhiên lớn hơn 2 => các số này đều lẻ => p là số lẻ

+ Với p=3 thì p+6=9 (không phải số tự nhiên)

+ Với p=5 thì p+2=7 (nhận)

+ Với p > 5, do p là số tự nhiên nên p= 5k+1, 5k+2; 5k+3 hoặc 5k+4 (k\(\in\)N)

+ Nếu p= 5k+2 thì p+8= 5k+10 chia hết cho 5 mà 1 < 5 nên p + 8 là hợp số ( loại)

+ Nếu p= 5k+3 thì p+2= 5k+5 chia hết cho 5 mà 1 < 5 nên p + 2 là hợp số ( loại)

+ Nếu p= 5k+4 thì p+6= 5k+10 chia hết cho 5 mà 1 < 5 nên p + 6 là hợp số ( loại)

=> p=5

20 tháng 12 2016

số 3 á pn

17 tháng 11 2018

Mọi số tự nhiên đều viết dưới dạng 5k; 5k+1 ; 5k+2 ; 5k+3 ; 5k+4; 5k+5

- Nếu p = 5k+1 => p+14=5p+15= 5(p+3) chia hết cho 5 (loại)

- Nếu p = 5k+2 => p+8 = 5p+10 = 5(p+2) chia hết cho 5 (loại)

- Nếu p = 5k+3 => p+12 = 5p+15 = 5(p+3) chia hết cho 5 (loại)

- Nếu p = 5k+4 => p+6 = 5p+10 = 5(p+2) chia hết cho 5 (loại)

=> p chỉ có thể là 5k. Mà p là nguyên tố nên p = 5

Vậy p = 5

                Học tốt! (Mình chỉ biết chứng minh vậy thôi)

10 tháng 3 2016

 p+2; p+6;p+8;p+14 nguyên tố 
đặt: p = 5k+r (0 ≤ r < 5) 
* nếu r = 1 => p+14 = 5k+15 chia hết cho 5 
* nếu r = 2 => p+8 = 5k + 10 chia hết cho 5 
* nếu r = 3 => p+2 = 5k+5 chia hết cho 5 
* nếu r = 4 => p+6 = 5k+10 chia hết cho 5 
* nếu r = 0 => p = 5k là nguyên tố khi k = 1 
p = 5, các số kia là: 7,11,13,19 là các số nguyên tố: thỏa 

Vậy p = 5 
 

9 tháng 3 2016

p=5 dung ko

9 tháng 3 2016

a) p, p+2, p+4 nguyên tố? 
*nếu p = 3 => p+2 = 5, p+4 = 7 là 3 số nguyên tố 

*p # 3: 
nếu p chia 3 dư 1 => p+2 chia hết cho 3 : ko là số nguyên tố 
nếu p chia 3 dư 2 => p+4 chia hết cho 3 : ko là số nguyên tố 

Vậy chỉ có số nguyên tố p duy nhất thỏa là p = 3 

b) p+2; p+6;p+8;p+14 nguyên tố 
đặt: p = 5k+r (0 ≤ r < 5) 
* nếu r = 1 => p+14 = 5k+15 chia hết cho 5 
* nếu r = 2 => p+8 = 5k + 10 chia hết cho 5 
* nếu r = 3 => p+2 = 5k+5 chia hết cho 5 
* nếu r = 4 => p+6 = 5k+10 chia hết cho 5 
* nếu r = 0 => p = 5k là nguyên tố khi k = 1 
p = 5, các số kia là: 7,11,13,19 là các số nguyên tố: thỏa 

Vậy p = 5 

c) p+6, p+8, p+12, p+14 nguyên tố 
p = 5k+r 
xét như trên thấy r không thể là 1, 2, 3,4 
r = 0 => p = 5k nguyên tố => p = 5 
các số là 5, 11,13,17,19 nguyên tố 

Vậy p = 5 

chuc ban hoc tot  -_-

26 tháng 10 2015

 p+6, p+8, p+12, p+14 nguyên tố 
p = 5k+r 
xét như trên thấy r không thể là 1, 2, 3,4 
r = 0 => p = 5k nguyên tố => p = 5 
các số là 5, 11,13,17,19 nguyên tố 

26 tháng 10 2015

*Xét p=3=>p+2=4 là hợp số(loại)

*Xét p=3=>p+12=15 là hợp số(loại)

*Xét p=5=>p+6=11

                   p+8=13

                   p+12=17

                   p+14=19(thoả mãn)

*Xét p>5=>p có 4 dạng là 5k+1, 5k+2,5k+3 và 5k+4

-Với p=5k+1=>p+14=5k+1+14=5k+15=5.(k+3) là hợp số(loại)

-Với p=5k+2=>p+8=5k+2+8=5k+10=5.(k+0) là hợp số(loại)

-Với p=5k+3=>p+2=5k+3+2=5k+5=5.(k+1) là hợp số(loại)

-Với p=5k+4=>p+=5k+4+6=5k+10=5.(k+2) là hợp số(loại)

Vậy p=5 thoả mãn đề bài.

14 tháng 8 2016

a)-     nếu p= 2 => p là HS (loại)

   -    nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m

                      p+4= 3+4= 7  (SNT) => t/m

  -    Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1

                                        P:3 dư 2 => P= 3k +2

       +   P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3  ( t/m)

       + P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3   (t/m )

                    Vậy P=3

25 tháng 9 2016

Tìm số nguyên tố p sao cho

A. p, p+2, p+4 là các số nguyên tố

B. p+10,p+14 là các số nguyên tố

C. p+2,p+6,p+8,p+14 là các số nguyên tố

a)-     nếu p= 2 => p là HS (loại)

   -    nếu p= 3=> p+2= 3+ 2= 5 ( SNT) => t/m

                      p+4= 3+4= 7  (SNT) => t/m

  -    Nếu p nguyên tố> 3 => P:3 dư1 => P= 3k+1

                                        P:3 dư 2 => P= 3k +2

       +   P= 3k +1 =>p+2 = (3k+1)+2 =3k+3 chia hết cho 3  ( t/m)

       + P= 3k +2 =>p+4 = (3k+2)+ 4 =3k + 6 chia hết cho 3   (t/m )

                    Vậy P=3