Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi số lớn là a, số bé là b, ta có:
ab = a - b
ab + b = a
b(a+1) = a
b(a+1)+1=a+1
b(a+1)-(a+1)=0
(a+1)(b-1)=0
+) a+1=0 => a = -1
=> (-1)b= -1-b => b=0
+) b-1=0 => b=1
=> a=a-1 => loại
Từ đó suy ra a=0 và b=0
Bài giải
Ta có: a - b = 3.(a + b) (a,b thuộc Z)
a.b = -18
Xét a - b = 3.(a + b) và a.b = -18
Giả sử a < b và a là một số âm với b là một số dương (tại vì a.b = -18 nên một trong a, b là một số âm, còn lại là số dương)
Thì lúc đó: a - b là một số âm (a < b) và 3.(a + b) sẽ là một số dương (3.(số âm + số dương) a < b thì số âm + số dương = số dương, 3 nhân số dương = số dương)
Mâu thuẫn với giả thiết trên
Suy ra a > b và a là một số dương, b là một số âm
Xét a - b = 3.(a + b)
=> a - b = 3.a + 3.b
=> 3.a + 3.b - (a - b) = 0
=> 3.a + 3.b - a - b = 0
3.a - a + (3.b + b) = 0
2.a + 4.b = 0
2a = 0 - 4.b
2a = -(4.b)
a = -(2.b)
Xét a.b = -18
=> -(2.b).b = -18
=> -(2.b.b) = -18
=> -(2.b2) = -18
=> 2.b2 = 18
=> b2 = 18 : 2
=> b2 = 9
=> b2 = (-3)2 (b là số âm mà)
=> b = -3
=> a.(-3) = -18
=> a = -18 : (-3)
=> a = 9
Vậy a = 9 và b = -3
À khoan, cho mình nói lại:
Đừng viết giả sử, bỏ cái đó đi
b2 = 9
=> b = -3 hoặc b = 3
Nếu b = -3 thì a = 9, nếu b = 3 thì a.3 = -18 => a = -18 : 3 = -9
Vậy b = -3 thì a = 9, b = 3 thì a = -9
1. Gọi hai số cần tìm là \(a,b\)trong đó \(a-b=4\).
TH1: Gấp \(a\)lên \(3\)lần.
\(\hept{\begin{cases}a-b=4\\3a-b=60\end{cases}}\Leftrightarrow\hept{\begin{cases}2a=56\\b=a-4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=28\\b=24\end{cases}}\).
TH2: Gấp \(b\)lên \(3\)lần.
\(\hept{\begin{cases}a-b=4\\a-3b=60\end{cases}}\Leftrightarrow\hept{\begin{cases}2b=-56\\a=b+4\end{cases}}\Leftrightarrow\hept{\begin{cases}a=-24\\b=-28\end{cases}}\)
2. Gọi hai số là \(a,b\).
Có: \(\hept{\begin{cases}a+b=5\left(a-b\right)\\ab=24\left(a-b\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}4a=6b\\ab=24\left(a-b\right)\end{cases}}\Leftrightarrow\hept{\begin{cases}b=\frac{2}{3}a\\\frac{2}{3}a^2=24\left(a-\frac{2}{3}a\right)\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}b=\frac{2}{3}a\\\frac{2}{3}a^2-16a=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=0,b=0\\a=24,b=16\end{cases}}\)
Gọi hai số cần tìm là a và b(a;b\(\in\)Z)
Theo đề bài,ta có:
\(\Leftrightarrow a.b-a+b=0\)
\(\Leftrightarrow a.\left(b-1\right)+b-1=0-1\)
\(\Leftrightarrow a.\left(b-1\right)+b-1=-1\)
\(\Leftrightarrow\left(b-1\right).\left(a+1\right)=-1=\left(-1\right).1=1.\left(-1\right)\)
Suy ra ta có hai trường hợp:
*TH1:\(b-1=-1\)và \(a+1=1\)thì \(x=0;y=0\)
*TH2:\(b-1=1\)và \(a+1=-1\)thì \(a=-2;b=2\)
Vậy.............
Gọi hai số nguyên đó là x và y.
Theo đầu bài ta có: xy = x - y
\(\Leftrightarrow\) xy - x + y = 0 \(\Leftrightarrow\) x.(y - 1) + y - 1 = 0 - 1 \(\Leftrightarrow\) x.(y - 1) + y - 1 = -1
\(\Leftrightarrow\) (y - 1).(x + 1) = -1 = (-1).1 = 1.(-1)
Suy ra xét có 2 trường hợp:
*TH1: y - 1 = -1 và x + 1 = 1 thì x = 0 và y = 0.
*TH2 : y - 1 = 1 và x + 1 = -1 thì x = -2 và y = 2.
Vậy hoặc x = 0 ; y = 0 hoặc x = -2 ; y = -2
-2 và 2 : 0 và 0 đầy tìm tiếp đi giải tưng đó thôi
cho đúng nha
Hai số đó là: 0 và 0
Vì 0x0=0 và 0-0=0
Chúc bn hok giỏi nha
gọi 2 số đó là a và b.
ta có a*b=a-b
suy ra ab-a+b=0
=>a(b-1)+(b-1)=-1
=>(a+1)(b-1)=-1
sau đó xét 2 trường hợp
TH1:a+1=1 =>a=0 và b-1=-1 suy ra b=0
TH2:a+1=-1 suy ra a=-2 và b-1=1 =>b=2