K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
17 tháng 5 2019

\(\left\{{}\begin{matrix}a+b=7\\ab=12\end{matrix}\right.\) \(\Rightarrow\) theo Viet đảo, a và b là nghiệm của:

\(x^2-7x+12=0\Rightarrow\left[{}\begin{matrix}x=3\\x=4\end{matrix}\right.\) \(\Rightarrow\left(a;b\right)=\left(3;4\right);\left(4;3\right)\)

b/ \(\Delta'=\left(m+1\right)^2-m+4=\left(m+\frac{1}{2}\right)^2+\frac{19}{4}>0\)

Phương trình luôn có 2 nghiệm pb

Theo Viet ta có: \(\left\{{}\begin{matrix}x_1+x_2=-2\left(m+1\right)\\x_1x_2=m-4\end{matrix}\right.\)

\(x_1^2+x_2^2+3x_1x_2=0\)

\(\Leftrightarrow x_1^2+x_2^2+2x_1x_2+x_1x_2=0\)

\(\Leftrightarrow\left(x_1+x_2\right)^2+x_1x_2=0\)

\(\Leftrightarrow4\left(m+1\right)^2+m-4=0\)

\(\Leftrightarrow4m^2+9m=0\Rightarrow\left[{}\begin{matrix}m=0\\m=-\frac{9}{4}\end{matrix}\right.\)

Cho tớ sửa đề làm cho nó dễ nhé == chứ x2^2 mà x1 thôi thì tớ ko có bt lm 

Ta có : \(x^2+\left(-m+2\right)x-6=0\left(a=1;b=-m+2;c=-6\right)\)

Cái chỗ này là mk đổi dấu cho thuận một tí ko ko xét b đc )): lại 1 bước đi vạn dặm đau thì toang =)) 

\(\Delta=\left(-m+2\right)^2-4\left(-6\right)=m^2+4+24=m^2+28\) Vậy : Pt luôn có 2 nghiệm \(\forall x\)

Áp dụng hệ thức Vi et ta có : \(x_1+x_2=m-2;x_1x_2=-6\)

Theo bài ra ta có : \(x_2^2-x_1x_2+\left(m-2\right)x_1^2=16\)

\(\Leftrightarrow\left(x_1^2x_2^2\right)-x_1x_2+\left(m-2\right)=16\)

\(\Leftrightarrow\left(x_1x_2\right)^2-x_1x_2+m-2=16\)

\(\Leftrightarrow\left(-6\right)^2+6+m-2=16\)

\(\Leftrightarrow36+6+m-2=16\Leftrightarrow40+m-16=0\Leftrightarrow m=-24\)

8 tháng 5 2017

Để pt có hai nghiệm thì \(\Delta'\ge0\Rightarrow m^2-\left(m^2-m+1\right)\ge0\Rightarrow m-1\ge0\Rightarrow m\ge1.\)

Khi đó theo hệ thức Viet: \(\hept{\begin{cases}x_1+x_2=2m\\x_1.x_2=m^2-m+1\end{cases}}\)

Vậy thì \(x_1^2+2mx_2=x_1^2+\left(x_1+x_2\right)x_2=9\)

\(\Rightarrow x_1^2+x_1.x_2+x_2^2=9\Rightarrow\left(x_1+x_2\right)^2-x_1x_2=9\)

\(\Rightarrow\left(2m\right)^2-m^2+m-1=9\Rightarrow3m^2+m-10=0\)

\(\Rightarrow\orbr{\begin{cases}m=-2\left(l\right)\\m=\frac{5}{3}\left(n\right)\end{cases}}\)

13 tháng 4 2019

\(\Delta=m^2+8m+16-16m=m^2-8m+16=\left(m-4\right)^2\ge0.\)

Vậy pt luôn có 2 nghiệm phân biệt.

Theo vi ét : \(\hept{\begin{cases}x_1+x_2=m+4\\x_1.x_2=4m\end{cases}}\)

\(x_1^2+\left(m+4\right)x_2=16\)

\(\Leftrightarrow x_1^2+\left(x_1+x_2\right)x_2=16\Leftrightarrow x_1^2+x_2^2+x_1x_2=16\)

\(\Leftrightarrow\left(x_1+x_2\right)^2-x_1x_2=16\)

\(\Leftrightarrow\left(m+4\right)^2-4m=16\Leftrightarrow m^2+8m+16-4m=16\Leftrightarrow m^2+4m=0\)

\(\Leftrightarrow m\left(m+4\right)=0\Leftrightarrow\orbr{\begin{cases}m=0\\m=-4\end{cases}}\)

4 tháng 4 2020
https://i.imgur.com/Gu2x8wy.jpg
27 tháng 2 2019

a) \(\Delta'=1^2-m^2+3m=-\left(m^2-3m-1\right)\)

PT có 2 nghiệm PB \(\Leftrightarrow-\left(m^2-3m-1\right)>0\)

\(m^2-3m-1< 0\Leftrightarrow\left(m-\dfrac{3}{2}\right)^2>\dfrac{15}{4}\)

\(m-\dfrac{3}{2}>\dfrac{\sqrt{15}}{2}\Rightarrow m>\dfrac{\sqrt{15}+3}{2}\)

b) Vi-ét

\(\left\{{}\begin{matrix}x_1+x_2=2\\x_1x_2=m^2-3m\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4-2m^2+6m\)

\(\Rightarrow-2m^2+6m+4=8\)

Tính m ra

c) \(x^2_1+x^2_2=-2m^2+6m+4\)

\(=-2\left(m^2-3m-2\right)\)

\(=-2\left(m-\dfrac{3}{2}\right)^2-\dfrac{17}{4}\)

Lập luận để tìm ra GTNN