Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)Ta thấy: 5 đồng dư với 1(mod 2)
=>52003 đồng dư với 12003(mod 2)
=>52003 đồng dư với 1(mod 2)
=>52003=2k+1
=>\(19^{5^{2003}}=19^{2k+1}\)
a)Ta thấy: 5 đồng dư với 1(mod 2)
=>52003 đồng dư với 12003(mod 2)
=>52003 đồng dư với 1(mod 2)
=>52003=2k+1
Mà 19 đồng dư với 9(mod 10)
=>19 đồng dư với -1(mod 10)
=>192 đồng dư với (-1)2(mod 10)
=>192 đồng dư với 1(mod 10)
=>(192)k đồng dư với 1k(mod 10)
=>192k đồng dư với 1(mod 10)
=>192k.19 đồng dư với 1.9(mod 10)
=>192k+1 đồng dư với 9(mod 10)
=>\(19^{5^{2003}}\) đồng dư với 9(mod 10)
=>\(19^{5^{2003}}\)có tận cùng là 9
a, Ta có: 33^2003= 33^2000.33^3 = ......1 nhân ....7 =.......7
Ta lại có: 34^2003= 34^2000.34^3 = .......6 nhân .........4 =......4
Vậy có tận cùng là ; 4.7= .......8
phần b làm tương tự. Tận cùng=4
Một số có dạng \(\overline{...a}^x\) (với \(a,x\inℕ\)) sẽ có chữ số tận cùng giống với chữ số tận cùng của \(a^x.\)
a. Đặt số mũ của \(33^{2003}\) là \(x.\) Áp dụng cách làm trên ta lập được bảng sau:
\(x\) | Chữ số tận cùng |
\(1\) | \(3\) |
\(2\) | \(9\) |
\(3\) | \(7\) |
\(4\) | \(1\) |
\(5\) | \(3\) |
\(6\) | \(9\) |
\(7\) | \(7\) |
\(8\) | \(1\) |
\(n\) | \(...\) |
Ta thấy vòng lặp chữ số tận cùng gồm \(4\) số: \(3,9,7,1\) được tạo nên. Mà \(2003\div3\) dư \(2\Rightarrow\) chữ số tận cùng của \(33^{2003}\) là số thứ \(2\) trong dãy là \(9.\)
\(34^{2003}\) làm tương tự giải ra chữ số tận cùng của nó là \(6.\)
Mà \(9\cdot6=54\Rightarrow\) chữ số tận cùng của \(33^{2003}\cdot34^{2003}\) là \(4.\)
Câu b làm tương tự câu a giải ra được chữ số tận cùng của \(28^{2006}\cdot81^{2003}\) là \(4.\)