Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\text{A=3x^2+4x-2}\)
\(=3\left(x+\frac{2}{3}\right)^2-\frac{10}{3}\ge-\frac{10}{3}\)
Dấu ''='' xảy ra khi \(x+\frac{2}{3}=0\Rightarrow x=-\frac{2}{3}\)
=2(x2+5x-1/2)= 2(x2+5x+25/4-29/4) =2[(x-5/2)2-29/4]=2(x-5/2)2-29/2
vì 2(x-5/2) luôn lớn hơn hoặc bằng 0 nêm biểu thức nhỏ nhất là băngd -29/2 khi x=5/2
1 Do vai trò bình đẳng của x, y, z trong phương trình, trước hết ta xét x ≤ y ≤ z.
Vì x, y, z nguyên dương nên xyz ≠ 0, do x ≤ y ≤ z => xyz = x + y + z ≤ 3z => xy ≤ 3 => xy thuộc {1 ; 2 ; 3}.
Nếu xy = 1 => x = y = 1, thay vào (2) ta có : 2 + z = z, vô lí.
Nếu xy = 2, do x ≤ y nên x = 1 và y = 2, thay vào (2), => z = 3.
Nếu xy = 3, do x ≤ y nên x = 1 và y = 3, thay vào (2), => z = 2.
Vậy nghiệm nguyên dương của phương trình là các hoán vị của (1 ; 2 ; 3).
2
2, dùng bđt |a|+|b| >= |a+b| ,dấu "=" khi ab >= 0
A >= |2x+2+2013-2x|=2015
Dấu "=" khi (2x+2)(2013-x) >= 0 <=> -1 <= x <= 2013
\(1.=5^x\left(1+5^2\right)=5^x.26=3250\)
\(< =>5^x=125=>x=3\)
2. Để P có giá trị lớn nhất thì -/x-3/ có giá trị bé nhất...
=> x-3 có bé nhất hay x=3;
=>ĐPCM
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
\(B=x^2-6x+9+x^2-4x+4=2x^2-10x+13\\ B=2\left(x^2-2\cdot\dfrac{5}{2}x+\dfrac{25}{4}\right)+\dfrac{1}{2}=2\left(x-\dfrac{5}{2}\right)^2+\dfrac{1}{2}\ge\dfrac{1}{2}\\ B_{min}=\dfrac{1}{2}\Leftrightarrow x=\dfrac{5}{2}\)
Biểu thức B không có max
Ta có: /x - 3/ = /3 - x/
Đ = /x - 2/ + /x -3/ = /x - 2/ + /3 - x/ \(\ge\)/x - 2 + 3 - x/ = /1/ = 1
Đẳng thức xảy ra khi: (x - 2).(3 - x) = 0 => x - 2 = 0 hoặc x - 3 = 0 => x = 2 hoặc x = 3
Vậy giá trị nhỏ nhất của Đ là 1 khi x = 2 hoặc x = 3.