K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
12 tháng 12 2020

\(A=\dfrac{-x^2-1+x^2+4x+4}{x^2+1}=-1+\dfrac{\left(x+2\right)^2}{x^2+1}\ge-1\)

\(A_{min}=-1\) khi \(x=-2\)

\(A=\dfrac{4x^2+4-4x^2+4x-1}{x^2+1}=4-\dfrac{\left(2x-1\right)^2}{x^2+1}\le4\)

\(A_{max}=4\) khi \(x=\dfrac{1}{2}\)

12 tháng 12 2020

cm bn

NV
12 tháng 12 2020

\(A=\dfrac{-x^2-1+x^2-4x+4}{x^2+1}=-1+\dfrac{\left(x-2\right)^2}{x^2+1}\ge-1\)

\(A_{min}=-1\) khi \(x=2\)

\(A=\dfrac{4x^2+4-4x^2-4x-1}{x^2+1}=4-\dfrac{\left(2x+1\right)^2}{x^2+1}\le4\)

\(A_{max}=4\) khi \(x=-\dfrac{1}{2}\)

12 tháng 12 2020

cm bn

1:

a: =x^2-7x+49/4-5/4

=(x-7/2)^2-5/4>=-5/4

Dấu = xảy ra khi x=7/2

b: =x^2+x+1/4-13/4

=(x+1/2)^2-13/4>=-13/4

Dấu = xảy ra khi x=-1/2

e: =x^2-x+1/4+3/4=(x-1/2)^2+3/4>=3/4

Dấu = xảy ra khi x=1/2

f: x^2-4x+7

=x^2-4x+4+3

=(x-2)^2+3>=3

Dấu = xảy ra khi x=2

2:

a: A=2x^2+4x+9

=2x^2+4x+2+7

=2(x^2+2x+1)+7

=2(x+1)^2+7>=7

Dấu = xảy ra khi x=-1

b: x^2+2x+4

=x^2+2x+1+3

=(x+1)^2+3>=3

Dấu = xảy ra khi x=-1

 

AH
Akai Haruma
Giáo viên
7 tháng 9 2023

Lời giải:
$A=3-4x-x^2$
$-A=x^2+4x-3=(x^2+4x+4)-7=(x+2)^2-7$

Vì $(x+2)^2\geq 0$ với mọi $x$

$\Rightarrow -A=(x+2)^2-7\geq 0-7=-7$

$\Rightarrow A\leq 7$

Vậy $A_{\max}=7$. Giá trị này đạt tại $x+2=0\Leftrightarrow x=-2$

5 tháng 2 2021

\(F=-x^2+2.x.2-4+5=-\left(x^2-4x+4\right)+5\)

\(=-\left(x-2\right)^2+5\)

Thấy : \(\left(x-2\right)^2\ge0\)

\(\Rightarrow5-\left(x-2\right)^2\le5\)

Vậy MaxF = 5 tại x = 2 .

28 tháng 7 2019

Ta có:

\(A=-2x^2+4x+3\)

\(=-2x^2+4x-2+5\)

\(=-2\left(x^2-2x+1\right)+5\)

\(=-2\left(x-1\right)^2+5\)

Vì \(\left(x-1\right)^2\ge0\)với \(\forall x\)

\(\Rightarrow-2\left(x-1\right)^2\le0\)với \(\forall x\)

\(\Rightarrow A=-2\left(x-1\right)^2+5\le5\)với \(\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\)

                        \(\Leftrightarrow x-1=0\)

                        \(\Leftrightarrow x=1\)

Vậy  \(Max_A=5\Leftrightarrow x=1\)