Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=-4x^2-8x+3=-4\left(x^2+2x+1\right)+7=-4\left(x+1\right)^2+7\le7\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x+1\right)^2=0\Rightarrow x=-1\)
Vậy Max(A) = 7 khi x = -1
b) \(B=6x-x^2+2=-\left(x^2-6x+9\right)+11=-\left(x-3\right)^2+11\le11\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-3\right)^2=0\Rightarrow x=3\)
Vậy Max(B) = 11 khi x = 3
c) \(C=x\left(2-3x\right)=-3\left(x^2-\frac{2}{3}x+\frac{1}{9}\right)+\frac{1}{3}=-3\left(x-\frac{1}{3}\right)^2+\frac{1}{3}\le\frac{1}{3}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-\frac{1}{3}\right)^2=0\Rightarrow x=\frac{1}{3}\)
Vậy Max(C) = 1/3 khi x = 1/3
d) \(D=3x-x^2+2=-\left(x^2-3x+\frac{9}{4}\right)+\frac{17}{4}=-\left(x-\frac{3}{2}\right)^2+\frac{17}{4}\le\frac{17}{4}\left(\forall x\right)\)
Dấu "=" xảy ra khi: \(\left(x-\frac{3}{2}\right)^2=0\Rightarrow x=\frac{3}{2}\)
Vậy Max(D) = 17/4 khi x = 3/2
e) \(E=3-2x^2+2xy-y^2-2x\)
\(E=-\left(x^2-2xy+y^2\right)-\left(x^2+2x+1\right)+4\)
\(E=-\left(x-y\right)^2-\left(x+1\right)^2+4\le4\left(\forall x,y\right)\)
Dấu "=" xảy ra khi: \(\hept{\begin{cases}\left(x-y\right)^2=0\\\left(x+1\right)^2=0\end{cases}}\Rightarrow x=y=-1\)
Vậy Max(E) = 4 khi x = y = -1
A = \(4x^2\) - 8x + 3
= [\(\left(2x\right)^2\) - 2.2x.2 + \(2^2\)] \(-2^2\) + 3
= \(\left(2x-2\right)^2\) - 1
Ta có: \(\left(2x-2\right)^2\) ≤ 0 ∀ x
\(\left(2x-2\right)^2\) - 1 ≤ - 1
Hay A ≤ - 1
Dấu "=" xảy ra ↔ 2x - 2 = 0
2x = 2
x = 1
Vậy GTLN của A = - 1 ↔ x = 1
B = 6x \(-x^2\) + 2
= - (\(x^2\) - 6x) + 2
= - (\(x^2\) - 2.x.3 + \(3^2\)) \(-3^2\) + 2
= - \(\left(x-3\right)^2\) -7
Ta có: \(-\left(x-3\right)^2\) ≤ 0 ∀ x
\(-\left(x-3\right)^2\) - 7 ≤ - 7
Hay B ≤ - 7
Dấu "=" xảy ra ↔ - (x - 3) = 0
- x + 3 = 0
- x= - 3
x = 3
Vậy GTLN của B = - 7 ↔ x = 3
C = x(2 - 3x)
= 2x \(-3x^2\)
= - 3(\(x^2\) - \(\frac{3}{2}x\) )
= - 3(\(x^2\) - 2.x.\(\frac{3}{4}\) + \(\frac{3}{4}^2\)) \(-\frac{3}{4}^2\)
Ta có: \(-3\left(x+\frac{3}{4}\right)^2\) ≤ 0 ∀ x
\(-3\left(x+\frac{3}{4}\right)^2\) \(-\frac{9}{16}\) ≤ \(-\frac{9}{16}\)
Hay C ≤ \(-\frac{9}{16}\)
Dấu "=" xảy ra ↔ \(-3\left(x+\frac{3}{4}\right)\) = 0
- 3x \(-\frac{9}{4}\) = 0
- 3x = \(\frac{9}{4}\)
x = \(-\frac{3}{4}\)
Vậy GTLN của C = \(-\frac{9}{16}\) ↔ x = \(-\frac{3}{4}\)
Bài 2:
\(A=-2x^2+3x-5\)
\(=-2\left(x^2+\frac{3x}{2}-\frac{5}{2}\right)\)
\(=-2\left(x^2-\frac{3x}{2}+\frac{9}{16}\right)-\frac{31}{8}\)
\(=-2\left(x-\frac{3}{4}\right)^2-\frac{31}{8}\le-\frac{31}{8}\)
Dấu = khi \(-2\left(x-\frac{3}{4}\right)^2=0\Leftrightarrow x-\frac{3}{4}=0\Leftrightarrow x=\frac{3}{4}\)
Vậy \(Max_A=-\frac{31}{8}\Leftrightarrow x=\frac{3}{4}\)
\(4B=4x^2+4xy+4y^2-8x-12y+8076\)
= \(\left(2y\right)^2-4y\left(3-x\right)+\left(3-x\right)^2-\left(3-x\right)^2\)
\(+\left(2x\right)^2-8x+8076\)
= \(\left(2y-3+x\right)^2+3x^2-2x+8076\)
đến đây thì dễ rồi
\(A=-\dfrac{4}{x^2-4x+10}\\ =-\dfrac{4}{\left(x^2-2.x.2+4+6\right)}\\ =-\dfrac{4}{\left(x-2\right)^2+6}\)
\(\left(x-2\right)^2\ge0\\ \Rightarrow\left(x-2\right)^2+6\ge6\\ \Rightarrow\dfrac{4}{\left(x-2\right)^2+6}\le\dfrac{2}{3}\\ \Rightarrow A=-\dfrac{4}{\left(x-2\right)^2+6}\ge-\dfrac{2}{3}\)
Min A=-2/3 khi x=2
\(C=\dfrac{2}{x^2+4x+5}=\dfrac{2}{\left(x+2\right)^2+1}\)
Vì \(\left(x+2\right)^2\ge0\Rightarrow\left(x+2\right)^2+1\ge1\)
\(\Rightarrow C\le2\)
Dấu ''='' xảy ra \(\Leftrightarrow x=-2\)
Vậy Min C = 2 kjhi x = -2
Ta có:
\(A=-2x^2+4x+3\)
\(=-2x^2+4x-2+5\)
\(=-2\left(x^2-2x+1\right)+5\)
\(=-2\left(x-1\right)^2+5\)
Vì \(\left(x-1\right)^2\ge0\)với \(\forall x\)
\(\Rightarrow-2\left(x-1\right)^2\le0\)với \(\forall x\)
\(\Rightarrow A=-2\left(x-1\right)^2+5\le5\)với \(\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x-1\right)^2=0\)
\(\Leftrightarrow x-1=0\)
\(\Leftrightarrow x=1\)
Vậy \(Max_A=5\Leftrightarrow x=1\)