Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=\left(x^2-4x-5\right)\left(x^2-4x-5-14\right)+49\)
Đặt \(x^2-4x-5=a\)
\(P=a\left(a-14\right)+49=a^2-14a+49=\left(a-7\right)^2\ge0\)
\(\Rightarrow P_{min}=0\) khi \(a=7\Rightarrow x^2-4x-5=7\Rightarrow\left[{}\begin{matrix}x=6\\x=-2\end{matrix}\right.\)
A=\(\left(x^2-4x-5\right)\left(x^2-4x-19\right)+49\)
Đặt \(x^2-4x-12=y\)
\(\Rightarrow\)A=\(\left(y+7\right)\left(y-7\right)+49\)
\(\Leftrightarrow\)A= \(y^2-49+49\)
\(\Leftrightarrow\)A=\(y^2\)
Ta có \(y^2\ge0\forall y\)
Hay \(\left(x^2-4x-12\right)^2\ge0\forall x\)
\(\Rightarrow\)Min A=0\(\Leftrightarrow\)\(x^2-4x-12=0\)
\(\Leftrightarrow\)\(\left(x+2\right)\left(x-6\right)=0\)
\(\Leftrightarrow\hept{\begin{cases}x+2=0\\x-6=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=-2\\x=6\end{cases}}\)
Đặt \(a=x^2-4x-12\) thay vào N:
\(N=\left(x^2-4x-5\right)\left(x^2-4x-19\right)+49\)
\(=\left(a+7\right)\left(a-7\right)+49\)\(=a^2-49+49\)\(=a^2\)
Ta có: N = \(a^2\ge0\) \(\left(\forall a\right)\)
\(\Rightarrow\)MIN N = 0 \(\Leftrightarrow a^2=0\Leftrightarrow a=0\)
Hay \(x^2-4x-12=0\Leftrightarrow x^2-4x+4-16=0\)\(\Leftrightarrow\left(x-2\right)^2-4^2=0\)
\(\Leftrightarrow\left(x+2\right)\left(x-6\right)=0\)
\(\Leftrightarrow x=-2;x=6\)
Vậy Min A = 0 \(\Leftrightarrow x=-2;x=6\)
N= \((x^2-4x-5)\left(x^2-4x-19\right)+49\)
Đặt \(a=x^2-4x-12\) thì
\(x^2-4x-5=x^2-4x-12+7\)
=a + 7
\(x^2-4x-19=x^2-4x-12-7=a-7\)\(\Rightarrow N=\left(a+7\right)\left(a-7\right)+49\)
Như vậy đó thôiHạ Nhiên
Bài 2:
a: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\ge-16\)
Dấu '=' xảy ra khi x=-4
b: \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=-2\left(x-2\right)^2-7\le-7\)
Dấu '=' xảy ra khi x=2
c: \(C=x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=2
e: \(E=x^2-6x+y^2-2y+12\)
\(=x^2-6x+9+y^2-2y+1+2\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=3 và y=1
1. \(4x^2-49=0\)
\(\Leftrightarrow\left(2x+7\right)\left(2x-7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+7=0\Leftrightarrow x=-\dfrac{7}{2}\\2x-7=0\Leftrightarrow x=\dfrac{7}{2}\end{matrix}\right.\)
Vậy: \(x=-\dfrac{7}{2}\) hoặc \(x=\dfrac{7}{2}\)
===========
2. \(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x=6\)
Vậy: \(x=6\)
===========
3. \(10\left(x-5\right)-8x\left(5-x\right)=0\)
\(\Leftrightarrow10\left(x-5\right)+8x\left(x-5\right)=0\)
\(\Leftrightarrow\left(x-5\right)\left(10+8x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\Leftrightarrow x=5\\10+8x=0\Leftrightarrow x=-\dfrac{5}{4}\end{matrix}\right.\)
Vậy: \(x=5\) hoặc \(x=-\dfrac{5}{4}\)
1: Ta có: \(4x^2-49=0\)
\(\Leftrightarrow\left(2x-7\right)\left(2x+7\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{7}{2}\end{matrix}\right.\)
2: Ta có: \(x^2+36=12x\)
\(\Leftrightarrow x^2-12x+36=0\)
\(\Leftrightarrow\left(x-6\right)^2=0\)
\(\Leftrightarrow x-6=0\)
hay x=6