K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a﴿Ta có: |4,3‐x|\(\ge\)0﴾với mọi x﴿
nên 3,7+|4,3‐x|\(\ge\)3,7 hay A\(\ge\)3,7
Do đó, GTNN của A là 3,7 khi:|4,3‐x|=0
4,3‐x=0
x=4,3‐0
x=4,3
b﴿Ta có: |2x‐1,5|>=0﴾với mọi x﴿
‐|2x‐1,5|<=0
nên 5,5‐|2x‐1,5|<=5,5 hay B<=5,5
Do đó, GTLN của B là 5,5 khi:|2x‐1,5|=0
2x‐1,5=0
2x=0+1,5
2x=1,5
x=1,5/2=15/2=7,5
Vậy GTLN của B là 5,5 khi x=7,5

c)ta có 4x − 3 ≥ 0; 5x + 7,5 ≥ 0 

⇒E ≥ 17,5

=>GTNN của C là 17,5 hi x1=3/4 hoặc x2=-1,5

18 tháng 8 2020

Bài 2 : 

a) \(A=3,7+\left|4,3-x\right|\ge3,7\)

Min A = 3,7 \(\Leftrightarrow x=4,3\)

b) \(B=\left|3x+8,4\right|-14\ge-14\)

Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)

c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)

d) \(D=\left|x-2018\right|+\left|x-2017\right|\)

\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)

Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)

\(\Leftrightarrow2017\le x\le2018\)

24 tháng 8 2021

\(A=3,7+\left|4,3-x\right|\)

Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

\(B=\left|3x+8,4\right|-14\)

Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)

\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

\(D=\left|x-2018\right|+\left|x-2017\right|\)

\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có

\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)

1 tháng 1 2018

a, Với mọi x ta có :

\(\left|4,3-x\right|\ge0\)

\(\Leftrightarrow3,7+\left|4,3-x\right|\ge3,7\)

\(\Leftrightarrow P\ge3,7\)

Dấu "=" xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\)

\(\Leftrightarrow x=4,3\)

Vậy \(P_{Min}=3,7\Leftrightarrow x=4,3\)

b, Với mọi x ta có :

\(\left|2x-1,5\right|\ge0\)

\(\Leftrightarrow-\left|2x-1,5\right|\le0\)

\(\Leftrightarrow5,5-\left|2x-1,5\right|\le5,5\)

Dấu "=" xảy ra \(\Leftrightarrow\left|2x-1,5\right|=0\)

\(\Leftrightarrow2x-1,5=0\)

\(\Leftrightarrow x=0,75\)

Vậy \(Q_{Max}=5,5\Leftrightarrow x=0,75\)

11 tháng 7 2017

Bài 1:

a, \(A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu " = " khi \(\left|4,3-x\right|=0\Rightarrow x=4,3\)

Vậy \(MIN_A=3,7\) khi x = 4,3

b, \(B=\left|3x+\dfrac{41}{5}\right|-14,2\ge-14,2\)

Dấu " = " khi \(\left|3x+\dfrac{41}{5}\right|=0\Rightarrow x=\dfrac{-41}{15}\)

Vậy \(MIN_B=-14,2\) khi \(x=\dfrac{-41}{15}\)

c, \(C=\left|4x-3y\right|+\left|5y+7,5\right|\ge17,5\)

( do \(\left|4x-3y\right|+\left|5y+7,5\right|\ge0\) )

Dấu " = " khi \(\left\{{}\begin{matrix}\left|4x-3y\right|=0\\\left|5y+7,5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{8}\\y=-1,5\end{matrix}\right.\)

Vậy \(MIN_C=17,5\) khi \(\left\{{}\begin{matrix}x=\dfrac{-9}{8}\\y=-1,5\end{matrix}\right.\)

Bài 2:

a, \(A=5,5-\left|2x-1,5\right|\le5,5\)

Dấu " = " khi \(\left|2x-1,5\right|=0\Rightarrow x=0,75\)

Vậy \(MIN_A=5,5\) khi x = 0,75

b, c tương tự

14 tháng 7 2018

a) Vì \(\left|4,3-x\right|\ge0\Rightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu "=" xảy ra <=> \(\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

Vậy Amin = 3,7 khi và chỉ khi x = 4,3

b) Vì \(\left|3x+8,4\right|\ge0\Rightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu "=" xảy ra <=> \(\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=-2,8\)

Vậy BMin = -14 khi và chỉ khi x = -2,8

c) Vì \(\left|4x-3\right|\ge0;\left|5y+7,5\right|\ge0\Rightarrow B=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu bằng xảy ra <=> \(\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}\Leftrightarrow}\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}}\)

Vậy CMin = 17,5 khi và chỉ khi x = 3/4 và y = -1,5

d) D = |x-2018| + |x-2017| = |x-2018| + |2017-x| lớn hơn hoặc bằng |x-2018+2017-x| = |-1|=1

Dấu "=" xảy ra khi và chỉ khi (x-2018).(2017-x) lớn hơn hoặc bằng 0

              (Tự giải ra)

Vậy DMin = 1 khi và chỉ khi ...

1 tháng 12 2015

a)Ta có: |4,3-x|>=0(với mọi x)

nên 3,7+|4,3-x|>=3,7 hay P>=3,7

Do đó, GTNN của P là 3,7 khi:|4,3-x|=0

4,3-x=0

x=4,3-0

x=4,3

b)Ta có: |2x-1,5|>=0(với mọi x)

-|2x-1,5|<=0

nên 5,5-|2x-1,5|<=5,5 hay Q<=5,5

Do đó, GTLN của Q là 5,5 khi:|2x-1,5|=0

2x-1,5=0

2x=0+1,5

2x=1,5

x=1,5/2=15/2=7,5

Vậy GTLN của Q là 5,5 khi x=7,5

27 tháng 12 2020

Chịu rồi nhé