\(A=3,7+\left|4,3-x\right|\)

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Bài 1:

a, \(A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu " = " khi \(\left|4,3-x\right|=0\Rightarrow x=4,3\)

Vậy \(MIN_A=3,7\) khi x = 4,3

b, \(B=\left|3x+\dfrac{41}{5}\right|-14,2\ge-14,2\)

Dấu " = " khi \(\left|3x+\dfrac{41}{5}\right|=0\Rightarrow x=\dfrac{-41}{15}\)

Vậy \(MIN_B=-14,2\) khi \(x=\dfrac{-41}{15}\)

c, \(C=\left|4x-3y\right|+\left|5y+7,5\right|\ge17,5\)

( do \(\left|4x-3y\right|+\left|5y+7,5\right|\ge0\) )

Dấu " = " khi \(\left\{{}\begin{matrix}\left|4x-3y\right|=0\\\left|5y+7,5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{-9}{8}\\y=-1,5\end{matrix}\right.\)

Vậy \(MIN_C=17,5\) khi \(\left\{{}\begin{matrix}x=\dfrac{-9}{8}\\y=-1,5\end{matrix}\right.\)

Bài 2:

a, \(A=5,5-\left|2x-1,5\right|\le5,5\)

Dấu " = " khi \(\left|2x-1,5\right|=0\Rightarrow x=0,75\)

Vậy \(MIN_A=5,5\) khi x = 0,75

b, c tương tự

23 tháng 3 2017

\(a.M+(5x^2-2xy)=6x^2+9xy-y^2 \)
\(M=(6x^2+9xy-y^2)-(5x^2-2xy)\)
\(M=6x^2+9xy-y^2-5x^2+2xy\)
\(M=(6x^2-5x^2)+(9xy+2xy)-y^2\)
\(M=x^2+11xy-y^2\)
Vậy \(M=x^2+11xy-y^2\)
\(b.M+(3x^2y-2xy^3)=2x^2y-4xy^3\)
\(M=(2x^2y-4xy^3)-(3x^2-2xy^3)\)
\(M= \) \(2x^2-4xy^3-3x^2+2xy^3\)
\(M=(2x^2-3x^2)+(-4xy^3+2xy^3)\)
\(M=-x^2-2xy^3\)
Vậy \(M=-x^2-2xy^3\)



24 tháng 3 2017

a) M + (5x\(^2\) - 2xy) = 6x\(^2\) + 9xy - y\(^2\)

=> M = (6x\(^2\) + 9xy - y\(^2\)) - (5x\(^2\) - 2xy)

M = 6x\(^2\) + 9xy - y\(^2\) - 5x\(^2\) + 2xy

M = (6x\(^2\) - 5x\(^2\)) + (9xy + 2xy) - y\(^2\)

M = 1x\(^2\) + 11xy - y\(^2\)

11 tháng 9 2017

a/ \(\left|-1,3\right|-\left|-3,7\right|+\left|-\dfrac{1}{2}\right|\)

\(=1,3-3,7+\dfrac{1}{2}\)

\(=-2,4+\dfrac{1}{2}\)

\(=-2,9\)

b/ \(\left|\dfrac{2}{5}\right|-\left|-0,2\right|.\left|-7\right|\)

\(=\dfrac{2}{5}-0,2.7\)

\(=\dfrac{2}{5}.1,4\)

\(=0,56\)

c/ \(-15:\left|-3\right|+\left|0,5\right|\)

\(=-15:2+0,5\)

\(=-7,5+0,5\)

\(=-8\)

11 tháng 9 2017

Cảm ơn bn nha.haha

a: \(\dfrac{x+1}{5}+\dfrac{x+1}{6}=\dfrac{x+1}{7}+\dfrac{x+1}{8}\)

\(\Leftrightarrow\left(x+1\right)\left(\dfrac{1}{5}+\dfrac{1}{6}-\dfrac{1}{7}-\dfrac{1}{8}\right)=0\)

=>x+1=0

hay x=-1

b: \(\Leftrightarrow\left(\dfrac{x-1}{2009}-1\right)+\left(\dfrac{x-2}{2008}-1\right)=\left(\dfrac{x-3}{2007}-1\right)+\left(\dfrac{x-4}{2006}-1\right)\)

=>x-2010=0

hay x=2010

c: \(\Leftrightarrow\dfrac{1}{x+2}-\dfrac{1}{x+5}+\dfrac{1}{x+5}-\dfrac{1}{x+10}+\dfrac{1}{x+10}-\dfrac{1}{x+17}=\dfrac{x}{\left(x+2\right)\left(x+17\right)}\)

\(\Leftrightarrow\dfrac{x}{\left(x+2\right)\left(x+17\right)}=\dfrac{x+17-x-2}{\left(x+2\right)\left(x+17\right)}\)

=>x=15

2 tháng 6 2017

a) \(VT=\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=3\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^2-1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^4-1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^8-1\right)\left(2^8+1\right)\left(2^{16}+1\right)\)

\(=\left(2^{16}-1\right)\left(2^{16}+1\right)=2^{32}-1=VP\)

Vậy \(\left(2+1\right)\left(2^2+1\right)\left(2^4+1\right)\left(2^8+1\right)\left(2^{16}+1\right)=2^{32}-1\)

30 tháng 8 2017

a.Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\) => \(\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)

Ta có: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(bk\right)^2+\left(dk\right)^2}{b^2+d^2}=\dfrac{k^2\left(b^2+d^2\right)}{b^2+d^2}=k^2\) (1)

\(\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}=\dfrac{\left(bk+dk\right)^2}{\left(b+d\right)^2}=\dfrac{k^2\left(b+d\right)^2}{\left(b+d\right)^2}=k^2\)(2)

Từ (1) và (2) suy ra: \(\dfrac{a^2+c^2}{b^2+d^2}=\dfrac{\left(a+c\right)^2}{\left(b+d\right)^2}\)

b.M = \(\left(1-\dfrac{1}{2^2}\right)\left(1-\dfrac{1}{3^2}\right)\left(1-\dfrac{1}{4^2}\right)...\left(1-\dfrac{1}{50^2}\right)\)

= \(\dfrac{3}{4}.\dfrac{8}{9}.\dfrac{15}{16}...\dfrac{2499}{2500}\)

= \(\dfrac{1.3.2.4.3.5...49.51}{2^2.3^2.4^2...50^2}\)

\(\dfrac{51}{2.50}=\dfrac{51}{100}\)

AH
Akai Haruma
Giáo viên
30 tháng 8 2017

Lời giải:

a)

Áp dụng tính chất dãy tỉ số bằng nhau:

\(\frac{a}{b}=\frac{c}{d}=\frac{a+c}{b+d}\)

\(\Rightarrow \left(\frac{a}{b}\right)^2=\left(\frac{b}{d}\right)^2=\frac{(a+c)^2}{(b+d)^2}(1)\)

Mặt khác, \(\frac{a}{b}=\frac{c}{d}\Rightarrow \frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}(2)\) (áp dụng tính chất dãy tỉ số bằng nhau)

Từ \((1),(2)\Rightarrow \frac{(a+c)^2}{(b+d)^2}=\frac{a^2+c^2}{b^2+d^2}\)

b) Vì \(1-\frac{1}{2^2};1-\frac{1}{3^2};...;1-\frac{1}{50^2}<1\) nên:

\(\left\{\begin{matrix} \left \{ 1-\frac{1}{2^2} \right \}=1-\frac{1}{2^2}\\ \left \{ 1-\frac{1}{3^2} \right \}=1-\frac{1}{3^2}\\ ....\\ \left \{ 1-\frac{1}{50^2} \right \}=1-\frac{1}{50^2}\end{matrix}\right.\)

\(\Rightarrow M=\left(1-\frac{1}{2^2}\right)\left(1-\frac{1}{3^2}\right)....\left(1-\frac{1}{50^2}\right)\)

\(\Leftrightarrow M=\frac{(2^2-1)(3^2-1)(4^2-1)....(50^2-1)}{(2.3....50)^2}\)

\(\Leftrightarrow M=\frac{[(2-1)(3-1)...(50-1)][(2+1)(3+1)...(50+1)]}{(2.3.4...50)^2}\)

\(\Leftrightarrow M=\frac{(2.3...49)(3.4.5...51)}{(2.3.4...50)^2}=\frac{(2.3.4...49)^2.50.51}{2.(2.3....49)^2.50^2}=\frac{50.51}{2.50^2}=\frac{51}{100}\)

11 tháng 9 2017

a/ \(\left|-x\right|=1,5\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1,5\\x=-1,5\end{matrix}\right.\)

Vậy .....

b/ \(\left|x+\dfrac{1}{2}\right|=2\dfrac{1}{2}\)

\(\Leftrightarrow\left|x+\dfrac{1}{2}\right|=\dfrac{5}{2}\)

\(\Leftrightarrow\left[{}\begin{matrix}x+\dfrac{1}{2}=\dfrac{5}{2}\\x+\dfrac{1}{2}=-\dfrac{5}{2}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=-3\end{matrix}\right.\)

Vậy ....

c/ \(\left|0,5-x\right|=\left|-0,5\right|\)

\(\left|0,5-x\right|=0,5\)

\(\Leftrightarrow\left[{}\begin{matrix}0,5-x=0,5\\0,5-x=-0,5\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)

Vậy ...

11 tháng 9 2017

Cảm ơn bn nha.haha

Bài1:

Giải 1 câu các câu sau tương tự

1.A=|x|+1

Với mọi x thì |x|>=0

=>|x|+1 >=1

Hay A>=1

Để A=1 thì |x|=0

=>x=0

Vậy...

Bài2:

1.A=−|x−2|+7

Với mọi x thì −|x−2|nhỏ hơn bằng 0

=>−|x−2|+7 nhỏ hơn bằng 7

Hay A nhỏ hơn bằng 7

Để A=7 thì |x−2|=0

=>x-2=0=>x=2

Các câu sau tương tự

3 tháng 9 2017

1) \(A=\left|x\right|+1\ge1\forall x\)

\(\Rightarrow GTNN\) của A là 1 khi \(\left|x\right|=0\Leftrightarrow x=0\)

vậy GTNN của A là 1 khi \(x=0\)

2) \(B=\left|x+1\right|-\dfrac{7}{3}\ge-\dfrac{7}{3}\forall x\)

\(\Rightarrow GTNN\) của B là \(-\dfrac{7}{3}\) khi \(\left|x+1\right|=0\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

vậy GTNN của B là \(-\dfrac{7}{3}\) khi \(x=-1\)

3) \(C=\dfrac{2}{5}\left|2x+5\right|-2\ge-2\forall x\)

\(\Rightarrow GTNN\) của C là -2 khi \(\left|2x+5\right|=0\Leftrightarrow2x+5=0\Leftrightarrow2x=-5\Leftrightarrow x=-\dfrac{5}{2}\)

vậy GTNN của C là -2 khi \(x=-\dfrac{5}{2}\)

25 tháng 3 2017

a,f(x)=0

<=>3x-6=0

<=>3x=6

<=>x=2

Vậy nghiệm của f(x)=2

1 tháng 4 2017

sử dụng TC phân phối Thu Trang