Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
a: \(B=\left(x+2\right)^2+\left(y-\dfrac{1}{5}\right)^2-10\ge-10\)
Dấu '=' xảy ra khi x=-2 và y=1/5
b: \(C=\left(x+3\right)^4+1\ge1\)
Dấu '=' xảy ra khi x=-3
c: \(D=x^2-4x+4+11=\left(x-2\right)^2+11\ge11\)
Dấu '=' xảy ra khi x=2
a) (x-1):2/3=-2/5
=>x-1=-4/15
=>x=11/15
b) |x-1/2|-1/3=0
=>|x-1/2|=1/3
=>\(\left\{{}\begin{matrix}x=\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{5}{6}\\x=-\dfrac{1}{3}+\dfrac{1}{2}=\dfrac{1}{6}\end{matrix}\right.\)
c) Tương Tự câu B
a) Ta có: \(\dfrac{4}{5}-3\left|x\right|=\dfrac{1}{5}\)
\(\Leftrightarrow3\left|x\right|=\dfrac{4}{5}-\dfrac{1}{5}=\dfrac{3}{5}\)
\(\Leftrightarrow\left|x\right|=\dfrac{1}{5}\)
hay \(x\in\left\{\dfrac{1}{5};-\dfrac{1}{5}\right\}\)
b) Ta có: \(4x-\dfrac{1}{2}x+\dfrac{3}{5}x=\dfrac{4}{5}\)
nên \(\dfrac{41}{10}x=\dfrac{4}{5}\)
hay \(x=\dfrac{8}{41}\)
c) Ta có: \(\left(2x-8\right)\left(10-5x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-8=0\\10-5x=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=8\\5x=10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=4\\x=2\end{matrix}\right.\)
d) Ta có: \(\dfrac{3}{4}+\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}\)
\(\Leftrightarrow\dfrac{1}{4}\left|2x-1\right|=\dfrac{7}{2}-\dfrac{3}{4}=\dfrac{14}{4}-\dfrac{3}{4}=\dfrac{11}{4}\)
\(\Leftrightarrow\left|2x-1\right|=11\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=11\\2x-1=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=12\\2x=-10\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=6\\x=-5\end{matrix}\right.\)
a: (2x-3/2)(|x|-5)=0
=>2x-3/2=0 hoặc |x|-5=0
=>x=3/4 hoặc |x|=5
=>\(x\in\left\{\dfrac{3}{4};5;-5\right\}\)
b: x-8x^4=0
=>x(1-8x^3)=0
=>x=0 hoặc 1-8x^3=0
=>x=1/2 hoặc x=0
c: x^2-(4x+x^2)-5=0
=>x^2-4x-x^2-5=0
=>-4x-5=0
=>x=-5/4
\(a.ĐK:x\ne3;1\)
\(\Rightarrow\dfrac{1}{2\left(x-3\right)}+\dfrac{3x-10}{\left(x-1\right)\left(x-3\right)}=\dfrac{7}{2}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)+2\left(3x-10\right)}{2\left(x-1\right)\left(x-3\right)}=\dfrac{7\left(x-1\right)\left(x-3\right)}{2\left(x-1\right)\left(x-3\right)}\)
\(\Leftrightarrow x-1+2\left(3x-10\right)=7\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow x-1+6x-20=7\left(x^2-4x+3\right)\)
\(\Leftrightarrow7x-21=7x^2-28x+21\)
\(\Leftrightarrow7x^2-35x+42=0\)
\(\Leftrightarrow7\left(x^2-5x+6\right)=0\)
\(\Leftrightarrow x^2-5x+6=0\)
\(\Leftrightarrow x^2-2x-3x+6=0\)
\(\Leftrightarrow x\left(x-2\right)-3\left(x-2\right)=0\)
\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(tm\right)\\x=3\left(ktm\right)\end{matrix}\right.\)
b.\(ĐK:x\ne2;4\)
\(\Rightarrow\dfrac{x-1}{x-2}-\dfrac{x+3}{4-x}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\dfrac{\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)}{\left(x-2\right)\left(4-x\right)}=\dfrac{2}{\left(x-2\right)\left(4-x\right)}\)
\(\Leftrightarrow\left(x-1\right)\left(4-x\right)-\left(x+3\right)\left(x-2\right)=2\)
\(\Leftrightarrow4x-x^2-4+x-x^2+2x-3x+6-2=0\)
\(\Leftrightarrow-2x^2+4x=0\)
\(\Leftrightarrow-2x\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\left(tm\right)\\x=2\left(ktm\right)\end{matrix}\right.\)
a: \(\Leftrightarrow\dfrac{1}{2\left(x-3\right)}+\dfrac{3x-10}{\left(x-1\right)\left(x-3\right)}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1+2\left(3x-10\right)=7\left(x-1\right)\left(x-3\right)\)
\(\Leftrightarrow7\left(x^2-4x+3\right)=x-1+6x-20=7x-21\)
\(\Leftrightarrow\left(x-3\right)\left(7x-7\right)-7\left(x-3\right)=0\)
=>(x-3)(7x-14)=0
=>x=3(loại) hoặc x=2(nhận)
b: \(\Leftrightarrow\left(x-1\right)\left(x-4\right)+\left(x+3\right)\left(x-2\right)=-2\)
\(\Leftrightarrow x^2-5x+4+x^2+x-6=-2\)
\(\Leftrightarrow2x^2-4x=0\)
=>2x(x-2)=0
=>x=0(nhận) hoặc x=2(loại)
\(C=\dfrac{5}{3-\left(4x+1\right)^2}\)
Điều kiện xác định khi
\(3-\left(4x+1\right)^2\ne0\Leftrightarrow\left[{}\begin{matrix}4x+1\ne\sqrt[]{3}\\4x+1\ne-\sqrt[]{3}\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x\ne\dfrac{\sqrt[]{3}-1}{4}\\x\ne\dfrac{-\sqrt[]{3}-1}{4}\end{matrix}\right.\)
Ta có :
\(\left(4x+1\right)^2\ge0,\forall x\)
\(\Leftrightarrow3-\left(4x+1\right)^2\le3\)
\(\Leftrightarrow C=\dfrac{5}{3-\left(4x+1\right)^2}\ge\dfrac{5}{3}\)
Vậy \(GTNN\left(C\right)=\dfrac{5}{3}\left(tạix=-\dfrac{1}{4}\right)\)
\(B=\left(2x\right)^2+2\left(y-1\right)^2-5\)
vì \(\left\{{}\begin{matrix}\left(2x\right)^2\ge0,\forall x\\2\left(y-1\right)^2\ge0,\forall y\end{matrix}\right.\)
\(\Rightarrow B=\left(2x\right)^2+2\left(y-1\right)^2-5\ge-5\)
Dấu "=" xảy tại khi
\(\left\{{}\begin{matrix}2x=0\\2\left(y-1\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=1\end{matrix}\right.\)
Vậy \(GTNN\left(B\right)=-5\left(tạix=0;y=1\right)\)
\(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\)
vì \(B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6\le0,\forall x\inℝ\)
\(\Rightarrow B=-\left(\dfrac{4}{9}x-\dfrac{2}{15}\right)^6+3\le3\)
Dấu "=" xảy ra khi và chỉ khi
\(\dfrac{4}{9}x-\dfrac{2}{15}=0\Rightarrow\dfrac{4}{9}x=\dfrac{2}{15}\Rightarrow x=\dfrac{9}{15}\)
Vậy \(GTLN\left(B\right)=3\left(tạix=\dfrac{9}{15}\right)\)
\(A=\left(2x+\dfrac{1}{3}\right)^4-1\)
vì \(\left(2x+\dfrac{1}{3}\right)^4\ge0,\forall x\inℝ\)
\(\Rightarrow A=\left(2x+\dfrac{1}{3}\right)^4-1\ge-1\)
Dấu "=" xảy ra khi và chỉ khi
\(2x+\dfrac{1}{3}=0\Rightarrow2x=-\dfrac{1}{3}\Rightarrow x=-\dfrac{1}{6}\)
\(\Rightarrow GTNN\left(A\right)=-1\left(tạix=-\dfrac{1}{6}\right)\)
a.\(\left(3x-2\right)^2=16\)
Ta có: \(\left(3x-2\right)^2=16\)
\(\Rightarrow\left(3x-2\right)^2=\left(4\right)^2\)
\(\Rightarrow3x-2=4\)
\(\Rightarrow3x=6\)
\(\Rightarrow x=2\)
b. \(\left(\dfrac{4}{5}x-\dfrac{3}{4}\right)^3=\dfrac{-8}{125}\)
\(\Rightarrow\left(\dfrac{4}{5}x-\dfrac{3}{4}\right)^3=\left(\dfrac{-2}{5}\right)^3\)
\(\Rightarrow\dfrac{4}{5}x-\dfrac{3}{4}=\dfrac{-2}{5}^{ }\)
\(\Rightarrow\dfrac{4}{5}x-=\dfrac{7}{20}\)
\(\Rightarrow x=\dfrac{7}{16}\)
\(\left|x+\dfrac{11}{17}\right|\ge0\)
\(\left|x+\dfrac{2}{17}\right|\ge0\)
\(\left|x+\dfrac{4}{17}\right|\ge0\)
\(\Leftrightarrow\left|x+\dfrac{11}{17}\right|+\left|x+\dfrac{2}{17}\right|+\left|x+\dfrac{4}{17}\right|\ge0\)
\(\Leftrightarrow x+\dfrac{11}{17}+x+\dfrac{2}{17}+x+\dfrac{4}{17}=4x\)
\(3x+\left(\dfrac{11}{17}+\dfrac{2}{17}+\dfrac{4}{17}\right)=4x\)
\(3x+1=4x\Leftrightarrow4x-3x=1\Leftrightarrow x=1\)
Vậy...
Ta có: \(\left\{{}\begin{matrix}\left|x+\dfrac{11}{17}\right|\ge0\\\left|x+\dfrac{2}{17}\right|\ge0\\\left|x+\dfrac{4}{17}\right|\ge0\end{matrix}\right.\Leftrightarrow\left|x+\dfrac{11}{17}\right|+\left|x+\dfrac{2}{17}\right|+\left|x+\dfrac{4}{17}\right|\ge0\)
\(\Leftrightarrow4x\ge0\Leftrightarrow x\ge0\)
\(\Leftrightarrow x+\dfrac{11}{17}+x+\dfrac{2}{17}+x+\dfrac{4}{17}=4x\)
\(\Leftrightarrow3x+1=4x\)
\(\Leftrightarrow x=1\)
Vậy x = 1
\(B=\dfrac{2x+4}{x^2+2}\)
\(x^2\ge0\forall x\)
\(\Rightarrow x^2+2\ge2\)
\(\Rightarrow\dfrac{2x+4}{x^2+2}\le\dfrac{2x+4}{2}\)
Dấu "=" xảy ra khi:
\(x^2=0\Rightarrow x=0\)
\(\Rightarrow MAX_B=\dfrac{2.0+4}{0^2+2}=\dfrac{4}{2}=2\)
\(C=\dfrac{4x^2-4x-7}{\left(x-2\right)^2}\)
\(\left(x-2\right)^2\ne0\)
\(\left(x-2\right)^2\ge0\)
\(C=\dfrac{4x^2-4x-7}{\left(x-2\right)^2}\le\dfrac{4x^2-4x-7}{1}\)
\(MAX_C=\dfrac{4.3^2-4.3-7}{\left(3-2\right)^2}=\dfrac{17}{1}=17\)