Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
B = 5 - 4x2 + 6x
= -(4x2 - 6x - 5)
= -(4x2 - 6x + 9/4 - 29/4)
= -(4x2 - 6x + 9/4) + 29/4
B = -(2x - 3/2)2 + 29/4
Vì -(2x - 3/2)2 \(\le0\forall x\)
Nên : B = -(2x - 3/2)2 + 29/4 \(\le\frac{29}{4}\forall x\)
Vậy Bmax = \(\frac{29}{4}\) khi x = \(\frac{3}{4}\)
\(A=x^2-6x+10=\left(x-3\right)^2+1\ge1\)
\(\Rightarrow A_{min}=1\Leftrightarrow x=3\)
\(B=4x^2-4x+25=\left(2x-1\right)^2+24\ge24\)
\(\Rightarrow B_{min}=24\Leftrightarrow x=\frac{1}{2}\)
\(C=3x^2+9x+12=3\left(x+\frac{3}{2}\right)^2+\frac{21}{4}\ge\frac{21}{4}\)
\(\Rightarrow C_{min}=\frac{21}{4}\Leftrightarrow x=\frac{-3}{2}\)
1.
$A=x^2+8x+17=(x^2+8x+16)+1=(x+4)^2+1$
Vì $(x+4)^2\geq 0$ với mọi $x$
$\Rightarrow A\geq 0+1=1$
Vậy $A_{\min}=1$. Giá trị này đạt tại $x+4=0\Leftrightarrow x=-4$
--------------------
2.
$B=x^2-4x+7=(x^2-4x+4)+3=(x-2)^2+3$
Vì $(x-2)^2\geq 0$ với mọi $x$
$\Rightarrow B\geq 0+3=3$. Vậy $B_{\min}=3$. Giá trị này đạt được khi $x-2=0\Leftrightarrow x=2$
3.
$C=3x^2+6x+1=3(x^2+2x+1)-2=3(x+1)^2-2$
Vì $(x+1)^2\geq 0$ với mọi $x$
$\Rightarrow C\geq 3.0-2=-2$.
Vậy $C_{\min}=-2$. Giá trị này đạt được khi $x+1=0\Leftrightarrow x=-1$
4.
$D=-4x^2-4x$
$-D=4x^2+4x=(4x^2+4x+1)-1=(2x+1)^2-1$
Vì $(2x+1)^2\geq 0$ với mọi $x$
$\Rightarrow -D\geq 0-1=-1$
$\Rightarrow D\leq 1$
Vậy $D_{\max}=1$. Giá trị này đạt tại $2x+1=0\Leftrightarrow x=\frac{-1}{2}$
\(C=\left(x+2\right)^2+3\ge3\forall x\)
Dấu '=' xảy ra khi x=-2
1,
4x2+2y2+4xy-4x-6y+2019
=4x2+(4xy-4x)+(y2-2y+1)+(y2-4y+4)+2014
=4x2+2.2x(y-1)+(y-1)+(y-2)2+2014
=(2x+y-1)2+(y-2)2+2014>=2014
vì (2x+y-1)2 >=0 với mọi x,y
(y-2)2 >=0 với mọi y
dấu "=" xảy ra khi y-2=0 suy ra y=2
và 2x+y-1=0 suy ra x=-1/2
vậy 4x4+2y2+4xy -4x-6y+2019 min =2014 khi và chỉ khi x=-1/2,y=2
2,
ta có x2-6x+10=(x-3)2+1>=1
vì (x-3)2>=0 với mọi x
=> 1/x2-6x+10<=1(theo tính chất thì với a>=b thì 1/a<=1/b với a,b cùng dấu)
=> -3/x2-6x+10>=-3
dấu "="xảy ra khi x-3=0 =>x=3
vậy -3/x2-6x+10 min=-3 <=>x=3
1. x2-8x+1 = x2 -2x.4 + 42 - 42 +1 = ( x- 4 )2 - 15
mà ( x - 4 )2 > 0
=> ( x - 4 )2 -15 > 0
Vậy -15 là gt min của biểu thức khi x = 4
2. x2 - 4x + y2 - 6y + 2 = x2 - 2.2x + 22 + y2 - 2.3y + 32 -11 = (x-2)2 + ( y - 3)2 -11
mà ( x - 2)2 > 0
( y - 3)2 > 0
Vậy -11 là gt min của biểu thức khi x=2 và y = 3
Mình nghĩ là bài 3 là tìm gt lớn nhất chứ bạn ^^
\(\sqrt{x^2+6x+9}+\sqrt{x^2-4x+4}\)
= |x + 3| + |x - 2|
= |x + 3| + |2 - x| \(\ge\)|x + 3 + 2 - x| = 5
Vậy GTNN của M = 5
chưa vội kết luận nha, nãy ghi lộn:
Dấu "=" xảy ra khi <=> (x + 3)(2 - x) >= 0 (tự giải ra)
Vậy GTNN của M bằng 5 khi ....
Ta có: \(\left(2x-1\right)^2\ge0\)
\(\Rightarrow\) B nhỏ nhất khi \(4x^2-6x+1\)có giá trị nhỏ nhất
Mà: \(4x^2-6x+1=4\left(x^2-2.\dfrac{3}{4}x+\dfrac{9}{16}\right)-\dfrac{5}{4}=4\left(x-\dfrac{3}{4}\right)^2-\dfrac{5}{4}\ge\dfrac{-5}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{3}{4}\)
\(\Rightarrow\min\limits_{\left(4x^2-6x+1\right)}=\dfrac{-5}{4}.\) khi \(x=\dfrac{3}{4}\)
\(\Rightarrow\left(2x-1\right)^2=\dfrac{1}{4}\)
\(\Rightarrow\min\limits_B=\dfrac{-5}{4}:\dfrac{1}{4}=\dfrac{-5}{4}.4=-5\) Khi \(x=\dfrac{3}{4}\)
Ta có: (2x−1)2≥0(2x−1)2≥0
⇒⇒ B nhỏ nhất khi 4x2−6x+14x2−6x+1có giá trị nhỏ nhất
Mà: 4x2−6x+1=4(x2−2.34x+916)−54=4(x−34)2−54≥−544x2−6x+1=4(x2−2.34x+916)−54=4(x−34)2−54≥−54
Dấu "=" xảy ra ⇔x=34⇔x=34
⇒min(4x2−6x+1)=−54.⇒min(4x2−6x+1)=−54. khi x=34x=34
⇒(2x−1)2=14⇒(2x−1)2=14
⇒minB=−54:14=−54.4=−5⇒minB=−54:14=−54.4=−5 Khi x=34
P = 4x^2 - 6x + 18 =
= [ (2x)^2 - 2.2x.3/2 + (3/2)^2 ] + 18 - 9/4
= ( 2x - 3/2 )^2 + 15.75
Vì ( 2x - 3/2 )^2 \(\ge\)0 với mọi x
Nên Pmin = 15,75
Hok tốt!!!!!!!!!!!
P= 4x2 -6x+18
=[(2x)2-2.2x.3/2 + 9/4] -9/4+18
=(2x-3/2)2+63/4
=> (2x-3/2)2 lớn hơn hoặc bằng 0
=>(2x-3/2)2+63/4 lớn hơn hoặc bằng 0
MIN P=63/4 khi 2x-3/2=0
2x = 3/2
x = 3/2 :2
x = 3/4