K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
AI
2
Các câu hỏi dưới đây có thể giống với câu hỏi trên
NT
0
17 tháng 4 2022
\(B=\dfrac{4x^2-2x+1}{x^2}=\dfrac{3x^2+\left(x^2-2x+1\right)}{x^2}=3+\dfrac{\left(x-1\right)^2}{x^2}\ge3\)
\(B_{min}=3\Leftrightarrow x=1\)
P
3
10 tháng 4 2017
\(\frac{3x^2+6x+3-2x^2-5x-2}{x^2+2x+1}=3-\frac{2\left(x^2+\frac{2.5}{4}x+\frac{25}{16}+\frac{7}{16}\right)}{\left(x+1\right)^2}=3-\frac{2\left(x+\frac{5}{4}\right)^2+\frac{7}{8}}{\left(x+1\right)^2}\)
lập luận giải nốt nha
DT
0
NT
0
21 tháng 6 2021
`2x^2+3y^2+4z^2-2(x+y+z)+2`
`=2x^2-2x+1/2+3y^2-2y+1/3+4z^2-2z+1/4+11/12`
`=2(x-1/2)^2+3(y-1/3)^2+4(z-1/4)^2+11/12>=11/12`
Dấu "=" xảy ra khi \(\begin{cases}x=\dfrac12\\y=\dfrac13\\z=\dfrac14\\\end{cases}\)
MC
0
MC
0
Vì ( x2 + 1 )2\(\ge\)0\(\forall\)x
=> A = ( x2 + 1 )2 + 4\(\ge\)4
Dấu "=" xảy ra <=> ( x2 + 1 )2 = 0 <=> x2 = - 1 ( vô lý )
=> Không xảy ra dấu bằng
Ta có : A = ( x2 + 1 )2 + 4 = x4 + 2x2 + 5 = x2 ( x2 + 2 ) + 5
Dễ thấy : x2 ( x2 + 2 )\(\ge\)0\(\forall\)x
=> A = x2 ( x2 + 2 ) + 5\(\ge\)5
Dấu "=" xảy ra <=> x2 ( x2 + 2 ) = 0 <=>\(\orbr{\begin{cases}x^2=0\\x^2+2=0\end{cases}}\)<=>\(\orbr{\begin{cases}x=0\\x^2=-2\left(loai\right)\end{cases}}\)
Vậy minA = 5 <=> x = 0
A=(x2+1)2 +4
= [(x2)2 + 2x1 + 12 ] +4
= [x4+2x+1] +4